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This is the first of two papers that use off-training set (OTS) error 
to investigate the assumption-free relationship between learning algo- 
rithms. This first paper discusses the senses in which there are no 
a priori distinctions between learning algorithms. (The second paper 
discusses the senses in which fhere are such distinctions.) In this first 
paper it is shown, loosely speaking, that for any two algorithms A 
and B, there are "as many" targets (or priors over targets) for which A 
has lower expected OTS error than B as vice versa, for loss functions 
like zero-one loss. In particular, this is true if A is cross-validation 
and B is "anti-cross-validation'' (choose the learning algorithm with 
largest cross-validation error). This paper ends with a discussion of 
the implications of these results for computational learning theory. It 
is shown that one cannot say: if empirical misclassification rate is low, 
the Vapnik-Chervonenkis dimension of your generalizer is small, and 
the training set is large, then with high probability your OTS error is 
small. Other implications for "membership queries" algorithms and 
"punting" algorithms are also discussed. 

"Even after the observation of the frequent conjunction of ob- 
jects, we have no reason to draw any inference concerning 
any object beyond those of which we have had experience." 
David Hume, in A Treatise of Human Nature, Book I, part 3, 
Section 12. 

1 Introduction 

Much of modern supervised learning theory gives the impression that 
one can deduce something about the efficacy of a particular learning al- 
gorithm (generalizer) without the need for any assumptions about the 
target input-output relationship one is trying to learn with that algo- 
rithm. At most, it would appear, to make such a deduction one has 
to know something about the training set as well as about the learning 
algorithm. 

Consider for example the following quotes from some well-known 
papers: "Theoretical studies link the generalization error of a learning 
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algorithm to the error on the training examples and the capacity of the 
learning algorithm (independent of concerns about the target)”; ”We have 
given bounds (independent of the target) on the training set size vs. 
neural net size needed such that valid generalization can be expected”; 
”If our network can be trained to classify correctly . . . 1 - (1 - )c of 
the k training examples, then the probability its [generalization] error 
is less than : is at least [a function, independent of the target, of t, 
7 ,  k ,  and the learning algorithm]”; ”There are algorithms that with high 
probability produce good approximators regardless of the target function 
. . . . We do not need to make any assumption about prior probabilities 
(of targets)”; ”To do Bayesian analysis, it is not necessary to work out 
the prior (over targets)”; “This shows that (the probability distribution of 
generalization accuracy) gets concentrated a t  higher and higher accuracy 
\,slues as more examples are learned (independent of the target).” Similar 
statements can be found in the ”proofs” that various supervised learning 
communities have offered for Occam’s razor (Blumer rf n l .  1987; Berger 
and Jeffreys 1992; see also Wolpert 1994a, 1995). There even exists a field 
(”agnostic learning,” Kearns ct nl. 1992) whose expressed purpose is to 
create learning algorithms that are assuredly effective even in the absence 
of assumptions about the target. 

Frequently the authors of these kinds of quotes understand that there 
are subtleties and caveats behind them. But the quotes taken at face value 
raise an intriguing question: can one actually get something for nothing 
in supervised learning? Can one get useful, caveat-free theoretical results 
that link the training set and the learning algorithm to generalization er- 
ror, without making assumptions conctrning the target? More generally, 
are there useful practical techniques that require no such assumptions? 
A s  a potential example of such a technique, note that people usually use 
cross-validation without making any assumptions about the underlying 
target, as though the technique were universally applicable. 

This is the first of two papers that present an initial investigation of 
this issuc. These papers can be viewed as an analysis of the mathematical 
”skeleton” of supervised learning, before the ”flesh” of particular priors 
over targets and similar problem-specific distributions is introduced. It 
should be emphasizcd that the work in these papers is very preliminary; 
e\’en the “skeleton” of supervised learning is extremely rich and detailed. 
Much remains to be done. 

The primary mathematical tool used in these papers is off-training 
set (OTS) generalization error, i.e., generalization error for test sets that 
contain no overlap with the training set. (In the conventional measure of 
gencralization error such overlap is allowed.) Section 2 of this first paper 
rxplains why such a measure of error is of interest, and in particular 
emphasizes that it is equivalent to (more conventional) IID error in many 
scenarios of interest. Those who already accept that OTS error is of 
interest can skip this section. 

Section 3 presents the mathematical formalism used in this paper. 
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Section 4 presents the “no free lunch” (NFL) theorems (phrase due 
to D. Haussler). Some of those theorems show, loosely speaking, that 
for any two algorithms A and B, there are ”as many” targets for which 
algorithm A has lower expected OTS error than algorithm B as vice versa 
(whether one averages over training sets or not). In particular, such 
equivalence holds even if one of the algorithms is random guessing; 
there are “as many” targets for which any particular learning algorithm 
gets confused by the data and performs worse than random as for which 
it performs better. As another example of the NFL theorems, it is shown 
explicitly that A is equivalent to B when B is an algorithm that chooses 
between two hypotheses based on which disagrees more with the training 
set, and A is an algorithm that chooses based on which agrees more with 
the training set. Other NFL theorems are also derived, showing, for 
example, that there are as many priors over targets in which A beats B 
(i.e., has lower expected error than B) as vice versa. In all this, the quotes 
presented at the beginning of this section are misleading at best. 

Next a set of simple examples is presented illustrating the theorems 
in scenarios in which their applicability is somewhat counterintuitive. 
In particular, a brief discussion is presented of the fact that there are as 
many targets for which it is preferable to choose between two learning 
algorithms based on which has larger cross-validation error (“anti-cross- 
validation”) as based on which has smaller cross-validation error. 

This section also contains the subsection ”Extensions for nonuniform 
averaging” that extends the NFL results beyond uniform averages; as that 
subsection shows, one can, for example, consider only priors over targets 
that are highly structured, and it is still often true that all algorithms are 
equal. Also in this section is the subsection ”On uniform averaging,” 
which provides the intellectual context for the analyses that result in the 
NFL theorems. 

Section 5 discusses the NFL theorem’s implications for and relation- 
ship with computational learning theory. It starts with a discussion of 
empirical error and OTS error. This discussion makes clear that one must 
be very careful in trying to interpret uniform convergence (VC) results. 
In particular, it makes clear that one cannot say: if the observed empir- 
ical misclassification rate is low, the VC dimension of your generalizer 
is small, and the training set is large, then with high probability your 
OTS error is small. After this, the implications of the NFL results for ac- 
tive learning, and for ”membership queries” algorithms and ”punting” 
algorithms (those that may refuse to make a guess), are discussed. 

Small and simple proofs of claims made in the text of this first paper 
are collected in Appendix C. 

Paper one concentrates on relative sizes of sets of targets and the asso- 
ciated senses in which all algorithms are a priori equivalent. In contrast, 
paper two concentrates on other ways to compare algorithms. Some of 
these alternative comparisons reveal no distinctions between algorithms, 
just like the comparisons in paper one. However some of the other al- 
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ternative comparisons result in a priori distinctions between algorithms. 
In particular, it is pointed out in paper two that the equivalence of av- 
erage OTS error between cross-validation and anti-cross-validation does 
not mean they have equivalent "head-to-head minimax" properties, and 
that algorithms can differ in those properties. Indeed, it may be that 
cross-validation has better head-to-head minimax properties than anti- 
cross-validation, and therefore can be a priori justified in that sense. 

Of course, the analysis of paper one does not rule out the possibility 
that there are targets for which a particular learning algorithm works well 
compared to some other one. To address the nontrivial aspects of this 
issue, paper two discusses the case where one averages over hypotheses 
rather than targets. The results of such analyses hold for all possible 
priors, since they hold for all (fixed) targets. This allows them to be used 
to prove, as a particular example, that cross-validation cannot be justified 
as a Bayesian procedure, i.e., there is no prior over targets for which, 
without regardfor the leanizfig a lpr i thn i s  i ir  qitestion, one can conclude that 
one should choose between those algorithms based on minimal rather 
than (for example) maximal cross-validation error. In addition, it is noted 
that for a very natural restriction of the class of learning algorithms, 
one can distinguish between using minimal rather than maximal cross- 
validation error-and the result is that one should use maximal error(!). 

All of the analysis up to this point assumes the loss function is in the 
same class as the zero-one loss function (which is assumed in almost all 
of computational learning theory). Paper two goes on to discuss other 
loss functions. In particular, the quadratic loss function modifies the 
preceding results considerably; for that loss function, there urc algorithms 
that are a priori superior to other algorithms. However, it is shown in 
paper two that no algorithm is superior to its "randomized" version, in 
which the set of potential fits to training sets is held fixed, but which fit 
is associated with which training set changes. In this sense one cannot a 
priori justify any particular learning algorithm, even for a quadratic loss 
function. 

Finally, paper two ends with a brief overview of some open issues 
and discusses future work. 

It cannot be emphasized enough that no claim is being made in this 
first paper that all algorithms are equivalent i i i  prmfticr, in the real world. 
In particular, no claim is being made that one should not use cross- 
validation in the real world. (I have done so myself many times in the 
past and intend to do so again in the future.) The sole concern of this 
paper is what can(not) be formally inferred about the utility of various 
learning algorithms if one makes no assumptions concerning targets. 

The work in these papers builds upon the analysis in Wolpert (1992, 
1993). Some aspects of that early analysis are nicely synopsized in Schaf- 
fer (7993, 1994). Schaffer (1994) also contains an inttwsting discussion 
of the implications of the NFL theorems for real wcrld learning, as does 
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Murphy and Pazzani (1994). See also Wolpert and Macready (1995) for 
related work in the field of combinatorial optimization. 

The major extensions beyond this previous work that is contained in 
these two papers are (1) many more issues are analyzed (e.g., essentially 
all of paper two was not touched upon in the earlier work); and (2) many 
fewer restrictions are made (e.g., losses other than zero-one are consid- 
ered, arbitrary kinds of noise are allowed, both hypotheses and targets 
are arbitrary probability distributions rather than single-valued functions 
from inputs to outputs, etc.). 

2 Off-Training-Set Error 

Many introductory supervised learning texts take the view that “the over- 
all objective . . . is to learn from samples and to generalize to new, as yet 
unseen cases” (italics mine-see Weiss and Kulikowski 1991, for example). 
Similarly, in supervised learning it is common practice to try to avoid 
fitting the training set exactly, to try to avoid “overtraining.” One of the 
major rationales given for this is that if one overtrains, ”the resulting (sys- 
tem) is unlikely to classify additional points (in the input space) correctly” 
(italics mine-see Dietterich 1990). As another example, in Blumer et al. 
(1987), we read that ”the real value of a scientific explanation lies not in 
its ability to explain (what one has already seen), but in predicting events 
that have yet to (be seen).” As a final example, in Mitchell and Blum 
(1994) we read that “(in Machine Learning we wish to know whether) 
any hypothesis found to approximate the target function well over a suf- 
ficiently large set of training examples will also approximate the target 
function well over other unobserved examples.” 

This language makes clear that OTS behavior is a central concern of 
supervised learning, even though little theoretical work has been devoted 
to it to date. Some of the reasons for such concern are as follows. 

1. In the low-noise (for outputs) regime, optimal behavior on the train- 
ing set is trivially determined by lookup table memorization. Of 
course, this has nothing to do with behavior off of the training set; 
so in this regime, it is only such OTS behavior that is of interest. 

2. In particular, in that low-noise regime, if one uses a memorizing 
learning algorithm, then for test sets overlapping with training sets 
the upper limit of possible test set error values shrinks as the train- 
ing set grows. If one does not correct for this when comparing 
behavior for different sizes of the training set (as when investigat- 
ing learning curves), one is comparing apples and oranges. In that 
low-noise regime, correcting for this effect by renormalizing the 
range of possible error values is equivalent to requiring that test 
sets and training sets be distinct, i.e., is equivalent to using OTS 
error (see Wolpert 1994a). 
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3. In artificial intelligence-ne of the primary fields concerned with 
supervised learning-the emphasis is often exclusively on general- 
izing to as yet unseen examples. 

4. In the real world, very often the process generating the training set 
is not the same as that governing testing. In such scenarios, the 
usual justification for testing with the same process that generated 
the training set (and with it the possibility that test sets overlap 
with training sets) does not apply. 

One example of such a difference between testing and training is 
“active” or ”query-based” or ”membership-based” learning. In that kind 
of learning the learner chooses, perhaps dynamically, where in the input 
space the training set elements are to be. However, conventionally, there 
is no such control over the test set. So testing and training are governed 
bv different processes. 

As another example, say we wish to learn tertiary protein structure 
from primary structure and then use that to aid drug design. We already 
k i i w  what tertiary structure corresponds to the primary structures in the 
training set. So we will never have those structures in the ”test set” (i.e., 
in the set of nucleotide sequences whose tertiary structure we wish to 
infer t o  aid the drug design process). We will only be interested in OTS 
error. 

5. Distinguishing the regime where test examples coincide with the 
training set from the one where there is no overlap amounts to split- 
ting supervised learning along its natural ”cleavage plane.” Since 
behavior can be radically different in the two regimes, it is hard to 
see why one wouldn‘t want to distinguish them. 

6. When the training set is much smaller than the full input space, the 
probability that a randomly chosen test set input value coincides 
with the training set is vanishingly small. So in such situations one 
expects the \ d u e  of the OTS error to be well-approximated by the 
value of the conventional IID (independent identically distributed) 
error, an error that allows overlap between test sets and training 
sets. 

One might suppose that in such a small training set regime there 
is no aspect of OTS error not addressable by instead calculating 
IID error. This is wrong though, as the following several points 
illustrate. 

7. First, even if OTS error is well approximated by IID error, it does not 
follow that quantities like the ”derivatives” of the errors are close 
to one another. In particular, it does not follow that the sign of the 
slope of the learning curve-often an object of major interest-is 
the same for both errors over some region of interest. 

As an example, in Wolpert P t  al .  (1995), it is shown that the expected 
OTS misclassification rate can iizcrrase with training set size, even if one 
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averages both over training sets and targets, and even if one uses the 
Bayes-optimal learning algorithm. In contrast, it is also shown there 
that under those same conditions, the expected IID misclassification rate 
is strictly nonincreasing as a function of training set size for the Bayes- 
optimal learning algorithm (see also the discussion in Wolpert 1994a con- 
cerning the statistical physics supervised learning formalism). 

8. Second, although it is usually true that a probability distribution 
over IID error will well-approximate the corresponding distribu- 
tion over OTS error, distributions conditioned on IID error can differ 
drastically from distributions conditioned on OTS error. This can 
be very important in understanding the results of computational 
learning theory. 

As an example of such a difference, let s be the empirical misclassifi- 
cation rate between a hypothesis and the target over the training set (i.e., 
the average number of disagreements over the training set), m the size of 
the training set, cflD the misclassification rate over all of the input space 
(the IID zero-one loss generalization error), and cbTs the misclassification 
rate over that part of the input space lying outside of the training set. 
(These terms are formally defined in the next section and at the begin- 
ning of Section 5.) Assume a uniform sampling distribution over the 
input space, a uniform prior over target input-output relationships, and 
a noise-free IID likelihood governing the training set generation. Then 
P(s  I cfrD. m ) ,  the probability of getting empirical misclassification rate s 
given global misclassification rate ciID, averaged over all training sets of 
size m, is just the binomial distribution (c;,D)S’lf (1 - c&,)(I1f-sf”)C’l’ S’lff where 

of a coin with bias cil0 toward heads). 
On the other hand, P(s  I cbTS3 m),  the probability of getting empirical 

misclassification rate s given off-training sets misclassification rate c&, 
averaged over all training sets of size m, is independent of c b s .  (This 
is proven in Section 5 below.) So the dependence of the empirical mis- 
classification rate on the global misclassification rate depends crucially 
on whether it is OTS or IID “global misclassification rate.” 

9. Third, often it is more straightforward to calculate a certain quantity 
for OTS rather than IID error. In such cases, even if one’s ultimate 
interest is IID error, it makes sense to instead calculate OTS error 
(assuming one is in a regime where OTS error well-approximates 
IID error). 

As an example, OTS error results presented in Section 5 mean that 
when the training set is much smaller than the full input space, P(c;,, I 
s ,m)  is (arbitrarily close to) independent of s, if the prior over target 
input-output relationships is uniform. This holds despite VC results 
saying that independent of the prior, it is highly unlikely for ciID and 
s to differ significantly. (This may seem paradoxical at first. See the 
discussion in Section 5 for the ”resolution.”) 

C“ - = a!/[b!(a - b) ! ]  (s can be viewed as the percentage of heads in m flips 
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The formal identity (in the appropriate limit) between a probability 
distribution over an OTS error and one over an IID error is established 
at the end of Appendix B. 

None of the foregoing means that the conventional IID error measure 
is "wrong." No claim is being made that one "should not" test with the 
same process that generated the training set. Rather the claim is simply 
that OTS testing is an issue of major importance. In that it gives no credit 
for memorization, it is also the natural way to investigate whether one 
can make assumption-free statements concerning an algorithm's gener- 
alization (!) ability. 

3 The Extended Bayesian Formalism - 

'These papers use the extended Bayesian formalism (EBF-Wolpert 1992, 
19941; Wolpert et 01. 1995). In the current context, the EBF is just conven- 
tional probability theory, applied to the case where one has a different 
random variable for the hypothesis output by the learning algorithm and 
for the target relationship. It is this crucial distinction that separates the 
EBF from conventional Bayesian analysis, and that allows the EBF (unlike 
conventional Bayesian analysis) to subsume all other major mathemati- 
cal treatments of supervised learning like computational learning theory, 
sampling theory statistics, etc. (see Wolpert 1994a). 

This section presents a synopsis of the EBF. Points (2), (S), (14), and 
(15) below can be skipped in a first reading. A quick reference of this 
section's synopsis can be found in Table 1. 

Readers unsure of any aspects of this synopsis, and in particular un- 
sure of any of the formal basis of the EBF or justifications for any of its 
(sometimes implicit) assumptions, are directed to the detailed exposition 
of the EBF in Appendix A.  

3.1 Overview. 

1. The input and output spaces are X and Y, respectively. They contain 
I I  and Y elements, respectively. A generic element of X is indicated 
by s, and a generic element of Y is indicated by y. 

2. Random variables are indicated using capital letters. Associated 
instantiations of a random variable are indicated using lower case 
letters. Note though that some quantities (e.g., the space X) are 
neither random variables nor instantiations of random variables, 
and therefore their written case carries no significance. 

Only rarely will it be necessary to refer to a random variable 
rather than an instantiation of it. In accord with standard statistics 
notation, "E(A 1 b)" will be used to mean the expectation value of 
A given B = b, i.e., to mean d a a P ( a  1 b) .  (Sums replace integrals 
if appropriate.) 
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Table 1: Summary of the Terms in the EBF 

- 

The sets X and Y, of sizes n and r 

The set d, of m X-Y pairs 
The X-conditioned distribution over 

The X-conditioned distribution over 
Y.h  
The real number c 

Y.f 

The X-value q 
The Y-value YF 

The Y-value YH 

The input and output space, 
respectively. 

The training set. 
The target, used to generate test sets. 

The hypothesis, used to guess for test 
sets. 
The cost. 

The test set point. 
The sample of the target f at point q. 
The sample of the hypothesis k at 
point q. 

The learning algorithm. 
The posterior. 
The likelihood. 
The prior. 

If c = L(YF,YH), L ( . .  .) is the ”loss function” 

L is ”homogeneous” if XI,, D[c. L(YH. y ~ ) ]  is independent of YH 

If we restrict attention to fs given by a fixed noise process superimposed on 
an underlying single-valued funtion from X to Y, 4, and if &P(yr I 9.4) is 
independent of YF, we have “homogeneous“ noise 

3. The primary random variables are the hypothesis X-Y relationship 
output by the learning algorithm (indicated by H),  the target (i.e., 
”true”) X-Y relationship (F), the training set ( D ) ,  and the real world 

These variables are related to one another through other random vari- 
ables representing the (test set) input space value (Q), and the associated 
target and hypothesis Y-values, YF and YH, respectively (with instantia- 
tions y~ and YH, respectively). 

cost (C). 

This completes the list of random variables. 
As an example of the relationship between these random variables 

and supervised learning, f, a particular instantiation of a target, could 
refer to a ”teacher” neural net together with superimposed noise. This 
noise-corrupted neural net generates the training set d .  The hypothesis 
h on the other hand could be the neural net made by one’s “student“ 
algorithm after training on d .  Then q would be an input element of the 
test set, YF and yH associated samples of the outputs of the two neural 
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nets for that element (the sampling of y~ including the effects of the 
superimposed noise), and c the resultant ”cost” [e.g., c could be ( Y F - ? / H ) ’ ] .  

3.2 Training Sets and Targets. 
4. m is the number of elements in the (ordered) training set d.  {dx(i). 

d y ( i ) }  is the set of rn input and output values in d. m’ is the number 
of distinct values in dx. 

5. Targetsf are always assumed to be of the form of X-conditioned 
distributions over Y, indicated by the real-valued function f(x E 
x.y  E Y) [i.e., P(yp 1 f . q )  = f(q.YF)]. Equivalently, where s, is 
defined as the v-dimensional unit simplex, targets can be viewed as 
mappings f : X i S, . 

Any restrictions on f are imposed by P(f.h,d.c), and in particu- 
lar by its marginalization, P(f). Note that any output noise process 
is automatically reflected in P(yf I f .9 ) .  Note also that the definition 
P ( y F  1 f. q )  = f (q .  y F )  only directly refers to the generation of test set ele- 
ments; in general, training set elements can be generated from targets in 
a different manner. 

6. The ”likelihood” is P(d I f ) .  It says how d was generated fromf. It 
is “vertical” if P(d I f )  is independent of the valuesf(x. ~ J F )  for those 
x 4 dx. As an example, the conventional IID likelihood is 

I l l  

[where T ( X )  is the ”sampling distribution”]. In other words, under 
this likelihood d is created by repeatedly and independently choos- 
ing an input value dx(i) by sampling T(.), and then choosing an 
associated output value by sampling f[dx(i). .], the same distribu- 
tion used to generate test set outputs. This likelihood is vertical. 

As another example, if there is noise in generating training set X 
values but none for test set X values, then we usually do not have a 
vertical P ( d  I f). (This is because, formally speaking, f directly governs 
the generation of test sets, not training sets; see Appendix A.) 

7. The ”posterior” usually means P(f I d), and the “prior” usually 
means P(f). 

8. It will be convenient at times to restrict attention to fs that are 
constructed by adding noise to a single-valued function from X to Y, 
4. For a fixed noise process, such f s are indexed by the underlying 
4. 

The noise process is ”homogeneous” if the sum over all 4 of P(YF 1 
q. 4)  is independent of yF. An example of a homogeneous noise process 
is classification noise that with probability p replaces 4(q)  with some 
other value in Y, where that ”other value in Y” is chosen uniformly and 
randomly. 
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3.3 The Learning Algorithm. 

9. Hypotheses h are always assumed to be of the form of X-conditioned 
distributions over Y, indicated by the real-valued function h(x  E 
X,y  E Y) [i.e., P(YH 1 h.q) = h(q.yH)]. Equivalently, where S ,  is de- 
fined as the r-dimensional unit simplex, hypotheses can be viewed 
as mappings h : X ---f S,. 

Any restrictions on h are imposed by P(f. k. d. c). Here and through- 
out, a ”single-valued” distribution is one that, for a given x, is a delta 
function about some y. Such a distribution is a single-valued function 
from X to Y. As an example, if one is using a neural net as one‘s regres- 
sion through the training set, usually the (neural net) h is single-valued. 
On the other hand, when one is performing probabilistic classification 
(as in softmax), h is not single-valued. 

10. Any (!) learning algorithm (aka ”generalizer”) is given by P(k  I d), 
although writing down a learning algorithm’s P(h 1 d) explicitly is 
often quite difficult. A learning algorithm is ”deterministic” if the 
same d always gives the same h. Backprop with a random initial 
weight is not deterministic. Nearest neighbor is. 

Note that since d is ordered, ”on-line” learning algorithms are sub- 

11. The learning algorithm only sees the training set d, and in particular 
does not directly see the target. So P(k  I f . d )  = P(h I d), which 
means that P(h.f I d) = P ( h  I d )  x P(f I d), and therefore P(f I h. d )  = 

sumed as a special case. 

W.f  I d ) / P ( h  I 4 = P(f I 4. 

3.4 The Cost and ”Generalization Error”. 

12. For the purposes of this paper, the cost c is associated with a par- 
ticular YH and YF, and is given by a loss function L(yH.yF). As an 
example, in regression, often we have “quadratic loss”: L(yH. y F )  = 

L ( . , . )  is ”homogeneous” if the sum over yf of b[c ,L(y~.yF)]  is some 
function A(c), independent of YH (6 here being the Kronecker delta func- 
tion). As an example, the ”zero-one” loss traditional in computational 
learning theory [L(u,  b )  = 1 if u # b, 0 otherwise] is homogeneous. 

13. In the case of ”IID error” (the conventional error measure), P ( q  I 
d) = ~ ( q )  (so test set inputs are chosen according to the same dis- 
tribution that determines training set inputs). In the case of OTS 
error, P(q I 4 = [ S ( q  q! dx)~(q) l / [C,b(q  $ dx)~(q)l, where 6(z) = 1 if 
z is true, 0 otherwise. 

(YH - YF)’. 

Subscripts OTS or IID on c correspond to using those respective kinds 
of error. 
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14. The "generalization error function" used in much of supervised 
learning is given by c' = E ( C  1 f. 1 1 .  d ) .  (Subscripts OTS or IID on c' 
correspond to using those respective ways to generate 9.) It is the 
average over all 67 of the cost c, for a given target f, hypothesis h ,  
and training set d .  

In general, probability distributions oi'er c' do not by themselves de- 
termine those over c or vice versa, i.e., there is not an injection between 
such distributions. However, the results in this paper in general hold for 
both L- and c', although they will be presented only for c. In addition, es- 
pecially when relating results in this paper to theorems in the literature, 
sometimes results for c' will implicitly be meant even when the text still 
refers to c. (The context will make this clear.) 

15. When the size of X, i z ,  is much greater than the size of the train- 
ing set, m, probability distributions over & and distributions over 

become identical. (Although, as mentioned in the previous 
section, distributions conditioned on cllU can be drastically differ- 
ent from those conditioned on &.) This is established formally in 
Appendix B. 

4 The No-Free-Lunch Theorems ~ 

I n  Wolpert (1992) it is shown that P ( c l d )  = d f d h  P(hlcl)P(fld)M,.,,(f.I~), 
where so long as the loss function is symmetric in its arguments, M, ,[(.. .) 
is symmetric in its arguments. (See point (11) of the previous section.) 
In other words, for the most common kinds of loss functions (zero-one, 
quadratic, etc.), the probability of a particular cost is determined by an 
inner product between your learning algorithm and the posterior prob- 
ability. v and / I  being the component labels of the d-indexed infinite- 
dimensional vectors P(f I d )  and P ( h  I d) ,  respectively.] Metaphorically 
speaking, how "aligned" you (the learning algorithm) are with the uni- 
verse (the posterior) determines how well you will generalize. 

The question arises though of how much can be said concerning a 
particular learning algorithm's generalization behavior without specify- 
ing the posterior (which usually means without specifying the prior). 
More precisely, the goal is to address the issue of how F1, the set of tar- 
gets f for which algorithm A outperforms algorithm B, compares to F I ,  

the set of targetsf for which the reverse is true. To analyze this issue, 
the simple trick is used of comparing the average over f of f-conditioned 
probability distributions for algorithm A to the same average for algo- 
rithm B. The relationship between those averages is then used to compare 

Evaluating suchf-averages results in a set of NFL theorems. In this 
section, first I derive the NFL theorems for the case where the target f 
need not be single-valued. In this case, the theorems say that uniformly 
averaged over allf, all learning algorithms are identical. The implications 

FI to Fl. 
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of this for how F1 compares to F2 are discussed after the derivation of 
the theorems. 

When the target f is not single-valued, it is a (countable) set of real 
numbers (one for each possible x-y pair). Accordingly, any P(f) is a 
probability density function in a multidimensional space. That makes 
integrating over all P(f)s a subtle mathematical exercise. However in 
the function+noise scenario, for a fixed noise process, ‘If” is indexed by 
a single-valued function 4. Since there are a countable number of bs, 
any P ( 4 )  is a countable set of real numbers, and it is straightforward to 
integrate over all P(4) .  Doing so gives some more NFL theorems, where 
one uniformly averages over all priors rather than just over all targets. 
These additional theorems are presented after those involving averages 
over all targets f .  

After deriving these theorems, I present some examples of them, de- 
signed to highlight their counterintuitive aspects. I also present a general 
discussion of the significance of the theorems, and in particular of the 
uniform averaging that goes into deriving them. 

Here and throughout this paper, when discussing non-single-valued 
fs, ”A (f)  uniformly averaged over all targets f ”  means J df A (f) / 1 df 1. 
Note that these integrals are implicitly restricted to thosef that constitute 
X-conditioned distributions over Y, i.e., to the appropriate product space 
of unit-simplices. (The details will not matter, because integrals will 
almost never need to be evaluated. But formally, integrals over targetsf 
are over a full r”-dimensional Euclidean space, with a product of Dirac 
delta functions and Heaviside functions inside the integrand enforcing 
the restriction to the Cartesian product of simplices.) 

Similar meanings for “uniformly averaged” are assumed if we are 
talking about averaging over other quantities, like P ( 4 ) .  

4.1 Averaging over All Target Distributionsf. We start with the fol- 
lowing simple lemma, that recurs frequently in the subsequent analysis. 
Its proof is in Appendix C .  

Consider now the ”(uniform) random learning algorithm”: for any 
test set element not in the training set, guess the output randomly (in- 
dependently of the training set d), according to a uniform distribution. 
(With certain extra stipulations concerning behavior for test set questions 
9 E dx, this is a version of the Gibbs learning algorithm.) An immediate 
corollary of Lemma (l), proven in Appendix C ,  is that for this algorithm, 
for a symmetric homogeneous loss function, P(c  I d) = A(c)/r for all 
training sets d. Similarly, for all priors over targets f ,  indicated by a, 
both P(c 1 m , a )  and P(c  I d,n) equal A(C)/Y, for this random learning 
algorithm. 
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This simple kind of reasoning suffices to get "NFL" results for the 
random algorithm, even without invoking a vertical likelihood. How- 
ever, more is needed for scenarios concerning other algorithms, scenar- 
ios in which there is "randomness," but it concerns targets rather than 
hypotheses. This is because we are interested in probability distributions 
conditioned on target-based quantities ( f ,  ( t ,  etc.), so results for when 
there is randomness in hypothesis-based quantities do not immediately 
carry over to results for randomness in target-based quantities. 

To analyze these alternative scenarios, we start with the following 
simple implication of Lemma (1) (see Appendix C): 

The uniform average over all targets f of P( c 1 f .  d )  equals 

(I...r) 1 $[c.L(!lH.yr)j P I y H  1 9 . 4  P ( q  Id)  
V l ,  Ill .q 

Recalling the definition of homogenous loss L, we have now proven 
the following: 

Theorem 1. For 1mtzogeizeotis loss L ,  flu. i i izi forii i  ozleruge oiler u l l f  c$P(c 1 f .  d )  
cqfrnls . \ (c ) ; r .  

Note that thisf-average is independent of the learning algorithm. So 
Theorem (1) constitutes an NFL theorem for distributions conditioned on 
targets f and training sets r f ;  it says that uniformly averaged over all f ,  
such distributions are independent of the learning algorithm. Note that 
this result holds independent of the sampling distribution, the training 
set, or the likelihood. 

As an example of Theorem (l), for the .lie) of zero-one loss, we get 
the f-average of E (  C I f .  d )  = r - 1 1 ' ~ .  More generally, for an even broader 
set of loss functions L than homogeneous Ls, the sum over target outputs 

of L(y,,.!/r) is independent of the hypothesis output, ykf. For such Ls 
we get generalizer-independence for the uniform average over targets f 
o f  E ( C  1 f .  d ) ,  even if we do not have such independence for the uniform 
average o f  P ( c  1 f .  11). 

Note that Theorem (1) does not rely on having q lie outside of dx; it 
holds even for IID error. In addition, since bothf and d are fixed in the 
conditional probability in Theorem (1), any statistical coupling between 
f and i f  is ignored in that theorem. For these kinds of reasons, Theorem 
( I )  is not too interesting by itself. The main use of it is to derive other 
results, results that rely on using OTS error and that are affected by the 
coupling of targetsf and training sets d .  As the first of these, I will show 
how to use Theorem (1) to evaluate the uniform f-average of P ( c  1 f .  m )  
for OTS error. 

In evaluating the uniformf-average of P ( c  1 f .  m ) ,  not allfs contribute 
the same amount to the answer. That is because 

P(c- 1 f . m )  = Epic / f . t l ) P ( d  I f )  
,1 
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and so long as the likelihood P(d I f )  is not uniform over f ,  we cannot 
just pull the outsidef-average through to use Theorem (1) to reduce the 
P(c I f , d )  to A(c) / r .  This might lead one to suspect that if the learning 
algorithm is "biased" toward the targets f contributing the most to the 
uniform f-average of P(c 1 f ,  m), then the average would be weighted 
toward (or away from) low values of cost, c. However this is wrong; it 
turns out that the uniform f-average of P(c  I f , m )  is independent of the 
learning algorithm, if one restricts oneself to OTS error. 

In fact, assume that we have any P(q  I d) such that P(q E dx I d) = 0 
[in particular, P(q 1 d) need not be the OTS P(q I d) discussed above]. For 
such a scenario, for a vertical likelihood [i.e., a P(d I f )  that is independent 
of the values of f ( x  $ d x 3  . ) I ,  we get the following result (see Appendix 

Theorem 2. For OTS error, a vertical P(d I f ) ,  and a homogeneous loss L, the 
uniform average over all targets f o f P ( c  I f  ~ m )  = A(c) / r .  

Again, this holds for any learning algorithm, and any sampling dis- 
tribution. Note that this result means in particular that the "weight" of 
fs on which one's algorithm performs worse than the random algorithm 
equals the weight for which it performs better. In other words, one can 
just as readily have a target for which one's algorithm has worse than ran- 
dom guessing as one in which it performs better than random. The pitfall 
we wish to avoid in supervised learning is not simply that our algorithm 
performs as poorly as random guessing, but rather that our algorithm 
performs worse than randomly! 

Using similar reasoning to that used to prove Theorem (2), we can 
derive the following theorem concerning the distribution of interest in 
conventional Bayesian analysis, P(c  1 d): 

Theorem 3. For OTS error, a vertical P(d  1 f ) ,  uniform P ( f ) ,  and a homogeneous 
loss L,  P (c  I d )  = h ( c ) / r .  

The reader should be wary of equating the underlying logic behind 
a target-averaging NFL theorem [ e g ,  Theorem (2) ]  with that behind a 
uniform-prior NFL theorem [e.g., Theorem (3) ] .  In particular, there are 
scenarios [i.e., conditioning events in the conditional distribution "P(c  I 
. . .)"I in which one of these kinds of NFL theorem holds but not the other. 
See the discussion surrounding Theorem (9) below for an example. 

As an immediate corollary of Theorem (3),  we have the following. 

Corollary 1. For OTS error, a vertical P(d I f ) ,  uniform P(f), and a homoge- 
neous loss L, P (c  I m )  = A(c) / r .  

As an aside, so long as L(a .  b )  = L(b,  a )  for all pairs a and b, the 
mathematics of the EBF is symmetric under interchange of h andf. [In 
particular, for any loss L, it is both true that P(f I h.d) = P ( f  I d), and 
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that P(h I f . d )  = P(k  1 d). ]  Accordingly, all of the NFL theorems have 
analogues where the hypothesis h rather than the target f is fixed and 
then uniformly averaged over. So for example, for OTS error, homo- 
geneous L ( . .  .), and a generalizer such that P ( d  1 h )  is independent of 
h(x $ d x ) ,  the uniform average over k of P ( c  I k . m )  = A ( c ) / r .  [For such 
a non-deterministic generalizer, assuming h l (x )  = h ( x )  for all x E d x ,  the 
probability that the training set used to produce the hypothesis was d 
is the same, whether that produced hypothesis is h l  or h2.1 Such results 
say that averaged over all hs the algorithm might produce, all posteriors 
over targets (and therefore all priors) lead to the same probability of cost, 
under the specified conditions. 

4.2 Averaging over All Functions 4. Now consider the scenario where 
only those targets f are allowed that can be viewed as single-valued func- 
tions o from X to Y with noise superimposed (see Section 3). To analyze 
such a scenario, I will no longer consider uniform averages involving 
f directly, but rather uniform averages involving o. Accordingly, such 
averages are now sums rather than integrals. (For reasons of space, only 
here in this subsection will I explicitly consider the case of f s  that are 
single-valued os with noise superimposed.) 

In this new scenario, Lemma (1) still holds, withf replaced by c>. 
However now we cannot simply set the uniform o-average of P(yr 1 q. d)  
to l / r ,  in analogy to the reasoning implicitly used above [see the proof 
of the “implication of Lemma (1)” in Appendix C]. To give an extreme 
example, if the test set noise process is highly skewed and sends all O(9)  
to some fixed value yl, then the o-average is 1 for yr = y1, 0 otherwise. 
Intuitively, if the noise process always results in the test value y1, then we 
can make a priori distinctions between learning algorithms; an algorithm 
that always guesses y l  outside of d, will beat one that does not. 

So for simplicity restrict attention to those noise processes for which 
the uniform 0-average of P(yF I q. o) is independent of the target output 
value yr .  Recall that such a (test set) noise process is called ”homoge- 
neous.” So following along with our previous argument (recounted in 
Appendix C), if we sum our o-average of P(yi 1 q .  C I )  over all y ~ ,  then by 
pulling the sum over yi- inside the average over O, we see that the sum 
must equal 1. [Again, see the proof of the “implication of Lemma (l).”] 
Accordingly, the 0-average equals l / r .  So we have the following analog 
of Theorem (1): 

Theorem 4. For homogeneous loss L and a lionlogeneom test-set noise process, 
the uniform average over all single-smlued targetfiinctions o of P( c 1 (9. d )  equals 
.I (c  ) / Y .  

Note that the noise process involved in generating the training set 
is irrelevant to this result. (Recall that ”homogeneous noise” refers to 
yr and yFf, and that y F  and YH are Y values for the test process, not the 
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training process.) This is also true for the results presented below. So 
in particular, all these results hold for any noise in the generation of the 
training set, so long as our error measure is concerned with whether or 
not h equals the (homogeneous noise corrupted) sample of the underlying 
Q, at the test point q. (Note, in particular, that such a measure is always 
appropriate for noise-free-and therefore trivially homogeneous-tes t set 
generation). 

We can proceed from Theorem (4) to get a result for P(c 1 f ~ m )  in the 
exact same manner as Theorem (1) gave Theorem (2) .  

Theorem 5. For OTS error, a vertical P(d I 4) ,  homogeneous loss L,  and a 
homogeneous test-set noise process, the uniform average over all single-valued 
targetfunctions 4 ofP(c I 4, m )  equals A(c) / r .  

Just as the logic behind Theorem ( 2 )  also resulted in Theorem (3), so 
we can use the logic behind Theorem (5) to derive the following. 

Theorem 6. For OTS error, a vertical P(d I d), homogeneous loss L, uniform 
P(@), and a homogeneous test-set noise process, P (c  1 d )  equals A(c) / r .  

Just as Theorem (3)  resulted in Corollary (l), so Theorem (6) estab- 
lishes the following. 

Corollary 2. For OTS error, vertical P(d I d), homogeneous loss L, a homoge- 
neous test-set H o k e  process, and uniform P(4 ) ,  P(c I m )  equals A(c)/r.  

We are now in a position to extend the NFL theorems to the case 
where neither the prior nor the target is specified in the conditioning 
event of our distribution of interest, and the prior need not be uniform. 
For such a case, the NFL results concern uniformly averaging over priors 
P(4) rather than over target functions 4. 

Since there are rr1 possible single-valued 4, P ( 4 )  is an r"-dimensional 
real-valued vector lying on the unit simplex. Indicate that vector as N, 
and one of its components [i.e., P ( 4 )  for one 41 as ~ 4 .  [More formally, ( 2  

is a hyperparameter: P($ 1 a )  = a$.] So the uniform average over all a 
of P(c  1 m. n) is (proportional to) J d n  P(c  1 m, a )  = ,f d o [ &  P ( 4  1 a )  P(c  I 
m. N, 4)], where the integral is restricted to the r"-dimensional simplex. 
[a is restricted to lie on that simplex, since C4P(4 I 0) = x4 a+ = 1.1 
It is now straightforward to use Theorem (5) to establish the following 
result (see Appendix C): 

Theorem 7. Assume OTS error, a vertical P(d 1 $), homogeneous loss L, and a 
homogeneous test-set noise process. Let (1 index the priors P ( 4 ) .  Then the uniform 
average over all (1 of P(c  I m. a )  equals A(c) / r .  

It is somewhat more involved to calculate the uniform average over all 
priors (indexed by) (Y of P(c I d ,  a ) .  The result is derived in Appendix D: 
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Theorem 8. Assume OTS error, a vertical P(d  I $), homogeneous loss L, and a 
honiogeneoiis test set noise process. Let (1 index the priors P ( 4 ) .  Then the iinifornz 
auerage ouer all a of P(c I d. a )  equals A(c)/r. 

By Corollary (2), Theorem (7) means that the average over all priors 
(r of P(c I m, a )  equals P(c  I m. uniform prior). Similarly, by Theorem (6), 
Theorem (8) means that the average over all priors CY of P(c I d. a )  equals 
P(c  1 d. uniform prior). In this sense, whatever one’s learning algorithm, 
one can just as readily have a prior that gives worse performance than 
that associated with the uniform prior as one that gives better perfor- 
mance. 

To put this even more strongly, consider again the uniform-random 
learning algorithm discussed at the beginning of this section. By Theo- 
rems (7) and (S), for any learning algorithm, one can just as readily have 
a prior for which that algorithm performs worse than the random learn- 
ing algorithm-worse than random guessing-as a prior for which one‘s 
algorithm performs better than the random learning algorithm. 

It may be that for some particular (homogeneous) noise process, for 
some training sets d and target functions 4, P(c I 4.d)  is not defined. 
This is the situation, for example, when there is no noise [d must lie 
on 4, so for any other d and 4, P ( c  I 4 ? d )  is meaningless]. In such 
a situation, averaging over all $s with d fixed [as in Theorem (4)] is 
not well-defined. Such situations can, at the expense of extra work, be 
dealt with explicitly. [The result is essentially that all of the results of 
this section except Theorem (4) are obtained.] Alternatively, one can 
usually approximate the analysis for such noise processes arbitrarily well 
by using other, infinitesimally different noise processes, processes for 
which P(c  I 4. d) is always defined. 

4.3 Examples. Example 1: Say we have no noise in either training 
set or test set generation, and the zero-one loss L( . ,  .). Fix two possible 
(single-valued) hypotheses, hl and h2. Let learning algorithm A take in 
the training set d, and guess whichever of hl and h2 agrees with d more 
often (the ”majority” algorithm). Let algorithm B guess whichever of h 1  

and h2 agrees less often with d (the ”antimajority” algorithm). If hl and 
h2 agree equally often with d, both algorithms choose randomly between 
them. Then averaged over all target functions 4, E(C I 4, m )  is the same 
for A and B. 

As an example, take n = 5 and r := 2 (i.e., X = {0,1,2,3.4}, and Y = 
(0, 1}) and a uniform sampling distribution ~ ( x ) .  Take m’, the number of 
distinct elements in the training set, to equal 4. For expository purposes, 
I will explicitly show that the average over all 4 of E(C I @ m’) is the 
same for A and B. [To calculate the average over all 4 of E(C I 4, m), one 
sums the average of E ( C  1 4. m’) P(m’ I m) over all m’.] I will take hl = the 
all Is h, and k2 = the all 0s h. 

1. There is one 4 that is all 0s (i.e., for which for all X values, Y = 0). 
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For that 4, algorithm A always picks hZ, and therefore E(C I 4. rn’ = 
4) = 0; algorithm A performs perfectly. For algorithm B, expected 
c = 1. 

2. There are five 4s with one 1. For each such 4, the probability that 
the training set has all four zeroes is 0.2. The value of C for such 
training sets is 1 for algorithm A, 0 for B. For all other training 
sets, C = 0 for algorithm A, and 1 for algorithm B. So for each of 
these $s, the expected value of C is 0.2(1) + 0.8(0) = 0.2 for A, and 
0.2(0) + 0.8(1) = 0.8 for B. 

3. There are 10 4s with two Is. For each such 4, there is a 0.4 prob- 
ability that the training set has one 1, and a 0.6 probability that it 
has both 1s. (It can’t have no 1s.) If the training set has a single 1, 
so does the OTS region, and C = 1 for A, 0 for B. If the training set 
has two Is, then our algorithms say guess randomly, so (expected) 
C = 0.5 for both algorithms. Therefore for each of these 4s, expected 
C = 0.4(1) + 0.6(.5) = 0.7 for algorithm A, and 0.4(0) + 0.6(.5) = 0.3 
for B. Note that here B outperforms A. 

4. The case of 4s with three 1s is the same as the case of 4s with two 
1s (just with ”1” replaced by ”0” throughout). Similarly, four 1s = 
one, and five Is = one. So it suffices to just consider the cases 
already investigated, where the number of 1s is zero, one, or two. 

5. Adding them up, for algorithm A we have one 4 with (expected) 
C = 0, five with C = 0.2, and 10 with C = 0.7. So averaged over all 
those $s, we get [1(0) + 5(0.2) + 10(0.7)]/[1 + 5 + 101 = 0.5. This is 
exactly the same expected error as algorithm B has: expected error 
for B is [1(1) + 5(0.8) + 10(0.3)]/16 = 0.5. QED. 

See Example 5 in paper two for a related example. 
Example 2: An algorithm that uses cross-validation to choose among 

a prefixed set of learning algorithms does no better on average than one 
that does not, so long as the loss function is homogeneous. In addition, 
cross-validation does no better than anti-cross-validation (choosing the 
learning algorithm with the worst cross-validation error) on average. In 
particular, the error on the validation set can be measured using a non- 
homogeneous loss (e.g., quadratic loss), and this result will still hold; all 
that is required is that we use a homogeneous loss to measure error on 
the test set. 

Alternatively, construct the following algorithm: ”If cross-validation 
says one of the algorithms under consideration has particularly low error 
in comparison to the other, use that algorithm. Otherwise, choose ran- 
domly among the algorithms.” Averaged over all targets, this algorithm 
will do exactly as well as the algorithm that always guesses randomly 
among the algorithms. In this particular sense, you cannot rely on cross- 
validation’s error estimate (unless you impose a prior over targets or 
some such). 
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Note that these results don‘t directly address the issue of how accu- 
rate cross-validation is as an estimator of generalization accuracy; the 
object of concern here is instead the error that accompanies use of cross- 
validation. For a recent discussion of the accuracy question (though in a 
non-OTS context), see Plutowski et n l .  (1994). For a more general discus- 
sion of how error and accuracy-as-an-estimator are statistically related 
(especially when that accuracy is expressed as a confidence interval), see 
Wolpert (1994a). The issue of how accurate cross-validation is as an esti- 
mator of generalization accuracy is also addressed in the discussion just 
below Theorem (9), and in the fixed$ results in paper two. 

Example 3: Assume you are a Bayesian, and calculate the Bayes- 
optimal guess assuming a particular P ( f )  [i.e., you use the P(h Lf) that 
would minimize the data-conditioned risk E ( C  1 d ) ,  i f  your assumed P(f) 
were the correct P ( f ) ] .  You now compare your guess to that made by 
someone who uses a non-Bayesian method. Then the NFL theorems 
mean (loosely speaking) that there are as many actual priors (your as- 
sumed prior being fixed) in which the other person has a lower data- 
conditioned risk as there are for which your risk is lower. 

Example 4: Consider any of the heuristics that people have come 
up with for supervised learning: avoid “over-fitting,” prefer ”simpler” 
to more “complex” models, ”boost” your algorithm, ”bag” it, etc. The 
NFL theorems say that all such heuristics fail as often (appropriately 
weighted) as they succeed. This is true despite formal arguments some 
have offered trying to prove the validity of some of these heuristics. 

4.4 General Implications of the NFL Theorems. The primary impor- 
tance of the NFL theorems is their implication that, for any two learning 
algorithms A and B, according to any of the distributions P ( c  1 d ) ,  P(c  1 m ) ,  
P ( c  1 f .  d ) ,  or P ( c  1 f, i n ) ,  there are just as many situations (appropriately 
weighted) in which algorithm A is superior to algorithm B as vice versa. 
So in particular, if we know that learning algorithm A is superior to B 
averaged over some set of targets F ,  then the NFL theorems tell us that 
B must be superior to A if one averages over all targets not in F .  This is 
true even if algorithm B is the algorithm of purely random guessing. 

Note that much of computational learning theory, much of sampling 
theory statistics (e.g., bias + variance results), etc., is based on quantities 
like P(c- 1 f.tn), or on other quantities determined by P(c I f . m )  (see 
Wolpert 1994a). Similarly, conventional Bayesian analysis is concerned 
with P ( c  1 d ) .  All of these quantities are addressed in the NFL theorems. 

As a special case of the theorems, when there are only two possible 
values of L( . .  .), any two algorithms are even more tightly matched in 
behavior than Theorems (1) through (8) indicate. [An example of such 
an L ( . .  ) is zero-one loss, for which there are only two possible values 
of L (  . ‘1, regardless of r . ]  Let C, and C2 be the costs associated with two 
learning algorithms. Now P{cI I stuff) = C,: P(cr. c2 stuff), and similarly 
for P(cz I stuff). (Examples of “stuff” are {d.f}, {ni},f-averages of these, 
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etc.) If L(. .  .) can take on two values, this provides us four equations (one 
each for the two possible values of c1 and the two possible values of c2) 
in four unknowns [P(cl ,  c2 I stuff) for the four possible values of c1 and 
cz]. Normalization provides a fifth equation. Accordingly, if we know 
both P(cl 1 stuff) and P(c2 1 stuff) for both possible values of c1 and c2, we 
can solve for P(cl.c2 I stuff) (sometimes up to some overall unspecified 
parameters, since our five equations are not independent). In particular, 
if we know that Pc,(c I stuff) = Pc,(c I stuff), then P(cI,cz I stuff) must 
be a symmetric function of c1 and c2. So for all of the "stuff"s in the 
NFL theorems, when L( . .  .) can take on two possible values, for any two 
learning algorithms, P(c l .  c2 I stuff) is a symmetric function of c1 and c2 

(under the appropriate uniform average).' 
All of the foregoing applies to more than just OTS error. In general 

IID error can be expressed as a linear combination of OTS error plus on- 
training set error, where the combination coefficients depend only on dx 
and T(X E d x ) .  So generically, if two algorithms have the same on-training 
set behavior (e.g., they reproduce d exactly), the NFL theorems apply to 
their IID errors as well as their OTS set errors. (See also Appendix B.) 

Notwithstanding the NFL theorems though, learning algorithms can 
differ in that (I) for particular f, or particular (nonuniform) P(f), differ- 
ent algorithms can have different probabilities of error (this is why some 
algorithms tend to perform better than others in the real world); (2) for 
some algorithms there is a distribution-conditioning quantity (e.g., an f) 
for which that algorithm is optimal (i.e., for which that algorithm beats 
all other algorithms), but some algorithms are not optimal for any value 
of such a quantity; and more generally (3) for some pairs of algorithms 
the NFL theorems may be met by having comparatively many targets in 
which algorithm A is just slightly worse than algorithm B, and compara- 
tively few targets in which algorithm A beats algorithm B by a lot. These 
points are returned to in paper two. 

4.5 Extensions for Nonuniform Averaging. The uniform sums over 
f [or 4, or P ( 4 ) ]  in the NFL theorems are not necessary conditions for 
those theorems to hold. As an example, consider the version of the 
theorems for which targets are single-valued functions 4 from X to Y, 
perhaps with output-space noise superimposed, and where one averages 
over priors o. It turns out that we recover the NFL result for that scenario 
if we average according to any distribution over the o! which is invariant 
under relabeling of the 4. We do not need to average according to the 
uniform distribution, and in fact can disallow all priors that are too close 
to the uniform prior. 

More formally, we have the following variant of Theorem (7), proven 
in Appendix C: 

'For more than two possible values of L ( . .  .), it is not clear what happens. Nor 1s j t  
clear how much of this carries over to costs C' (see Section 3) rather than C. 
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Corollary 3. Assume OTS error, a uerticd P ( d  I o) ,  homogeneous loss L, and a 
homogeneous test-set noise process. Let [I index the priors P( d), and let G ( o )  be 
a distribution over ( I .  Assiirne G(ct) is itzz?ariant iinder the transformation of the 
priors ( i  induced by relabeling the targets o. Then the aiwage according to G(tr) 
o f P ( c  j rn. (1) equals * \ ( c ) / v  

As a particular example of this result, define ( I *  to be the uniform 
prior, that is the vector all of whose components are equal. Then one 
G(  ( I )  that meets the assumption in Corollary (3 )  is the one that is constant 
over o except that it excludes all vectors o lying within some L2 distance 
of (I* [i.e., one C ( o )  that meets the assumption is the one that excludes all 
priors o that are too close to being uniform]. This is because rearranging 
the components of a vector does not change the distance between that 
vector and ( I * ,  so any G ( o )  that depends only on that distance obeys the 
assumption in Corollary ( 3 ) .  

Combined with Corollary (3)’ this means that G(t t )  can have struc- 
ture-it can have a huge amount of structure-and we still get NFL. 
Alternatively, the set of allowed priors can be tiny, and restricted to priors 
( I  with a lot of structure (i.e., to priors lying far from the uniform prior), 
and we still get NFL. Loosely speaking, there are just as many priors that 
have lots of structure for which your favorite algorithm performs worse 
than randomly as there are for which it performs better than randomly. 

An open question is whether the condition on G ( o )  in Corollary (3)  is 
a necessary condition to have the average according to G( (k ) of P( c 1 m. o )  
equal . l (c ) / r .  

Interestingly, we do not have the same kind of result when consider- 
ing averages over targets f of P(  c I f .  m )  rather than averages over o of 
Pic I ~ n .  0). This is because there is no such thing as a “uniformf” that we 
can restrict the average away from with the same kind of implications as 
restricting an average away from a uniform prior. However, by Theorem 
( 2 ) ,  for any pair of algorithms, there are targets that “favor” the first of 
the two algorithms, and there are targets that favor of the second. So by 
choosing from both sets of targets, we can construct many distributions 
r ( f )  that have a small support and such that the average of P ( c  I f .  ni) 
according to r(  f )  is the same for both algorithms. Indeed, an interesting 
open question is characterizing the set of such r ( f )  for any particular 
pair of algorithms. 

4.6 On Uniform Averaging. The results of the preceding subsection 
notwithstanding, it is natural to pay a lot of attention to the original 
uniform average forms of the NFL theorems When considering those 
forms, it should be kept in mind that the uniform averages overf [or u, 
or F‘(O)] were not chosen because there is strong reason to believe that 
allf are equally likely to arise in practice. Indeed, in many respects it 
is absurd to ascribe such a uniformity over possible targets to the real 
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world. Rather the uniform sums were chosen because such sums are a 
useful theoretical tool with which to analyze supervised learning. 

For example, the implication of the NFL theorems that there is no 
such thing as a general-purpose learning algorithm that works optimally 
for allflP(q5) is not too surprising. However, even if one already believed 
this implication, one might still have presumed that there are algorithms 
that usually do well and those that usually do poorly, and that one could 
perhaps choose two algorithms so that the first algorithm is usually su- 
perior to the second. The NFL theorems show that this is not the case. If 
all fs are weighted by their associated probability of error, then for any 
two algorithms A and B there are exactly as manyfs for which algorithm 
A beats algorithm B as vice versa. 

Now if one changes the weighting over fs to not be according to 
the algorithm’s probability of error, then this result would change, and 
one would have a priori distinctions between algorithms. However, a 
priori, the change in the result could just as easily favor either A or B. 
Accordingly, claims that ”in the real world P(f) is not uniform, so the 
NFL results do not apply to my favorite learning algorithm” are mis- 
guided at best. Unless you can prove that the nonuniformity in P(f) is 
well-matched to your favorite learning algorithm (rather than being “an- 
timatched” to it), the fact that P(f) may be nonuniform, by itself, provides 
no justification whatsoever for your use of that learning algorithm [see 
the inner product formula, Theorem (l), in Wolpert 1994al. 

In fact, the NFL theorems for averages over priors P ( 4 )  say (loosely 
speaking) that there are exactly as many priors for which any learning 
algorithm A beats any algorithm B as vice versa. So uniform distributions 
over targets are not an atypical, pathological case, out at the edge of the 
space. Rather they and their associated results are the average case(!). 
There are just as many priors for which your favorite algorithm performs 
worse than pure randomness as for which it performs better. [Recall the 
discussion just below Theorem (S).] 

So for the learning scenarios considered in this section (zero-one loss, 
etc.) the burden is on the user of a particular learning algorithm. Unless 
they can somehow show that P ( 4 )  is one of the ones for which their 
algorithm does better than random, rather than one of the ones for which 
it does worse, they cannot claim to have any formal justification for their 
learning algorithm. 

In fact if you press them, you find that in practice very often peo- 
ple’s assumption do not concern P(q5) at all, but rather boil down to the 
statement “okay, my algorithm corresponds to an assumption about the 
prior over targets; I make that assumption.” This is unsatisfying enough 
a formal justification as it stands. Unfortunately though, for many algo- 
rithms, no one has even tried to write down that set of P(q5) for which 
their algorithm works well. This puts the purveyors of such statements 
in the awkward position of invoking an unknown assumption. (More- 
over, for some algorithms one can show that there is no assumption solely 
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concerning targets that justifies that algorithm in all contexts. This is true 
of cross-validation, for example; see paper two.) 

Given this breadth of the implications of the uniform-average cases, 
it is not surprising that uniform distributions have been used before to 
see what one can say a priori about a particular learning scenario. For 
example, the “Ugly Duckling Theorem” (Watanabe 1985) can be viewed 
as (implicitly) based on a uniform distribution. Another use of a uniform 
distribution, more closely related to the uniform distributions occurring 
in this paper, appears in the ”problem-averaging” work of Hughes (1968). 
[See Waller and Jain (1978) as well for a modern view of the work of 
Hughes.] The words of Duda and Hart (1973) describing that work are 
just as appropriate here: “Of course, choosing the a priori distribution is 
a delicate matter. We would like to choose a distribution corresponding 
to the class of problems we typically encounter, but there is no obvious 
way to do that. A bold approach is merely to assume that problems are 
”uniformly distributed”. Let us consider some of the implications (of 
such an assumption).” 

In this regard, note that you really would need a proof based com- 
pletely on first principles to formally justify some particular (nonuni- 
form) P(f). In particular, you cannot use your “prior knowledge” (e.g., 
that targets tend to be smooth, that Occam’s razor usually works, etc.) 
to set P(f), without making additional assumptions about the applica- 
bility of that ”knowledge” to future supervised learning problems. This 
is because that ”prior knowledge” is ultimately an encapsulation of two 
things: the data set of your experiences since birth, and the data set of 
your genome‘s experiences in the several billion years it has been evolv- 
ing. So if you are confronted with a situation differing at all (!) from 
the previous experiences of you and/or your genome, then you are in an 
OTS scenario. Therefore the NFL theorems apply, and you have no for- 
mal justification for presuming that your ”prior knowledge” will apply 
off-training set (i.e., in the future). 

An important example of this is the fact that even if your prior knowl- 
edge allowed you to generalize well in the past, this provides no assur- 
ances whatsoever that you can successfully apply that knowledge to some 
current inference problem. The fact that a learning algorithm has been 
used many times with great success provides no formal (!) assurances 
about its behavior in the future.’ After all, assuming that how well you 
generalized in the past carries over to the present is formally equivalent 
to (a variant of) cross-validation-in both cases, one tries to extrapolate 
from generalization accuracy on input points for which we now know 
what the correct answer was, to generalization behavior in general. 

Finally, it is important to emphasize that results based on averag- 

‘All of this is a formal statement of a rather profound (if somewhat philosophi- 
cal) paradox: How is it that we perform inference so well in practice, given the NFL 
theorems and the limited scope of our prior knowledge! A discussion of some “head- 
to-head minimax“ ideas that touch on this paradox is presented in paper two. 
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ing uniformly over f/@/P(@) should not be viewed as normative. The 
uniform averaging enables us to reach conclusions that assumptions are 
needed to distinguish between algorithms, not that algorithms can be 
(profitably) distinguished without any assumptions, i.e., if such an aver- 
age ends up favoring algorithm A over B (as it might for a nonhomoge- 
neous loss function, for example), that only means one ”should” use A 
if one has reason to believe that allf are equally likely a priori. 

4.7 Other Peculiar Properties Associated with OTS Error. There are 
many other aspects of OTS error that, although not actually NFL theo- 
rems, can nonetheless be surprising. An example is that in certain situa- 
tions the expected (over training sets) OTS error grows as the size of the 
training set increases, even if one uses the best possible learning algo- 
rithm, the Bayes-optimal learning algorithm [i.e., the learning algorithm 
which minimizes E(C I d)-see Wolpert (1994a)l. In other words, some- 
times the more data you have, the less you know about the OTS behavior 
of 4, on average. 

In addition, the NFL theorems have strong implications for the com- 
mon use of a ”test set” or ”validation set” T to compare the efficacy of 
different learning algorithms. The conventional view is that the error 
measured on such a set is a sample of the full generalization error. As 
such, the only problem with using error on T to estimate ”full error” is 
that error on T is subject to statistical fluctuations, fluctuations that are 
small if T is large enough. However if we are interested in the error 
for x 4 { d  u T } ,  the NFL theorems tell us that (in the absence of prior 
assumptions) error on T is meaningless, no matter how many elements 
there are in T .  

Moreover, as pointed out in Section (4) of the second of this pair of 
papers, use of test sets cannot correspond to an assumption only about 
targets [i.e., there is no P(f) that, by itself, justifies the use of test sets]. 
Rather use of test sets corresponds to an assumption about both targets 
and the algorithms the test set is being used to choose between. Use of 
test sets will give incorrect results unless one has a particular relationship 
between the target and the learning algorithms being chosen between. 

In all this, even the ubiquitous use of test sets is unjustified (unless 
one makes assumptions). For a discussion of this point and of intuitive 
arguments for why the NFL theorems hold, see Wolpert (1994a). 

5 The NFL Theorems and Computational Learning Theory 

This section discusses the NFL theorem’s implications for and relation- 
ship with computational learning theory. 

Define the empirical error 
111 
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Sometimes the values .ir[dx(i)] in this definition are replaced by a constant; 
doing so has no effect on the analysis below. As an example, for zero-one 
loss and single-valued h, s is the average misclassification rate of h over 
the training set. Note that the empirical error is implicitly a function of 
d and h but of nothing else (T being fixed). (For deterministic learning 
algorithms, this reduces to being a function only of d . )  So for example 
P(s  I d,f) = J dhP(s  I d , f , h ) P ( h  I d )  = J d h P ( s  1 d,h)P(h  I d )  = P(s  I d).  

This section first analyzes distributions over C that involve the value 
of s, as most of computational learning theory does. Then it analyzes 
OTS behavior of “membership queries” algorithms and also of ”punting” 
algorithms (those that may refuse to make a guess), algorithms that are 
also analyzed in computational learning theory. 

5.1 NFL Theorems Involving Empirical Error. Some of the NFL the- 
orems carry over essentially unchanged if one conditions on s in the 
distribution of interest. This should not be too surprising. For example, 
consider the most common kind of learning algorithms, deterministic 
ones that produce single-valued hs. For such learning algorithms, the 
training set d determines the hypothesis h and therefore determines s. So 
specifying s in addition to d in the conditioning statement of the prob- 
ability distribution provides no information not already contained in d .  
This simple fact establishes the NFL theorem for P(c I f , d . s ) ,  for these 
kinds of learning algorithms. 

More generally, first follow along with the derivation of Lemma (l), 
to get 

where use was made of the identities P(yF I q , f . s )  = P(yF I q-f ) ,  and 
P(q 1 d , s )  = P(q 1 d ) .  (Both identities follow from the fact that PAIB,S.D,H[LI 1 
b, s(d, h ) ,  d ,  h)]  = P(a 1 b, d ,  h)  for any variables A and B.) 

Continuing along with the logic that resulted in Theorem (l), we ar- 
rive at the following analogue of Theorem (1) (that holds even for non- 
deterministic learning algorithms, capable of guessing non-single-valued 
11s): 

For homogeneous loss L, the uniform average over allf of P(c I f ?  d, s) 
equals A (c) /Y. 

Unfortunately, one cannot continue paralleling the analysis in Section 
(3) past this point, to evaluate quantities like the uniform average over all 
f of P(c I f ,  s, m).  The problem is that whereas P ( d  I f, m )  is independent 
of f ( x  4 d x )  (for a vertical likelihood), the same need not be true of 
P(d I f, s. m).  Indeed, often there are fs for which P(COTS 1 f? s. in) is not 
defined; for no d sampled from that f will an h be produced that has 
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error s with that d. In such scenarios the uniformf-average of P(cors I 
f. s. rn) is not defined. Moreover, the set off for which P(coTs I f. s. rn) 
is defined may vary with s. The repercussions of this carry through for 
any attempt to create s-conditioned analogs of the NFL theorems. (A 
counter-intuitive example of how the NFL theorems need not hold for 
s-conditioned distributions is presented in Appendix C.) 

In fact, it is hard to say anything general about P(c  I f>s.rn). In 
particular, it is not always the (peculiar) case that higher s results in 
lower COTS iff is fixed, as in the example in Appendix C. To see this, 
consider the scenario given there with a simple change in the learning 
algorithm. For the new learning algorithm, if all input elements of the 
training set, d x ,  are in some region 2, then an hypothesis h is produced 
that happens to equal the target f, whereas for any other dxs, there are 
errors both on and off dx. So if s = 0, we know that COTS = 0. But if s > 0, 
we know that COTS > 0; raising s from 0 has raised expected COTS. 

Now consider P(c  I s , d )  for uniform P(f), where it is implicitly as- 
sumed that for at least one k for which P ( h  I d) # 0, the empirical error is 
s, so P ( s . d )  # 0. For this quantity we do have an NFL result that holds 
for any learning algorithm (see Appendix C): 

Theorem 9. For kornugeneous L, OTS error, a vertical likel~koud, and uniform 
P(f), Pjc I s. d )  = A(c)/r. 

The immediate corollary is that for homogeneous L, OTS error, a vertical 
likelihood, and uniform P(f), P(c  I s.rn) = A(c)/r, independent of the 
learning algorithm. 

It is interesting to note that a uniform P(f) can give NFL for P(c  I s. rn) 
even though a uniform average over f of P(c  I f. s. m )  does not. This 
illustrates that one should exercise care in equating the basis of NFL for 
f-conditioned distributions [Theorem (2)] with having a uniform prior. 

An immediate question is how Theorem (9) can hold despite the ex- 
ample above where as s shrinks E(CoTs I f. s, rn) grows, for any target f. 
The answer is that P(c I s. rn) = dfP(c I f. s. rn) P(f I s, m).  Even if for 
any fixed target f the quantity P(c  1 f. s. rn) gets biased toward lower cost 
c as the empirical error s is raised, this does not mean that the integral 
exhibits the same behavior. 

As an aside, it should be noted that the only property of s needed 
by Theorem (9) or its corollary is that P(s 1 d,f) = P ( s  I d). In addition 
to holding for the random variable S, this property will hold for any 
random variable u that is a function only of d for the algorithms under 
consideration. So in particular, we can consider using cross-validation 
to choose among a set of one or more deterministic algorithms. Define 
(T as the cross-validation errors of the algorithms involved. Since for a 
fixed set of deterministic algorithms (T is a function solely of d, we see 
that for a uniform P(f), (T is statistically independent from C; there is no 
information contained in the set of cross-validation errors that has bear- 
ing on generalization error. In this sense, unless one makes an explicit 
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assumption for P(f), cross-validation error has no use as an estimate of 
generalization error. 

5.2 Compatibility with Vapnik-Chervonenkis Results. The fact that 
P(c I s. m )  = . 2 ( c ) / r  (under the appropriate conditions) means that P(c I 
s .m)  = P(c  1 m )  under those conditions [see Corollary (l)]. This implies 
that Pis 1 c. m )  is independent of cost c. So C~~~ and empirical error S 
are statistically independent, for uniform P(  f ), homogeneous L,  and a 
vertical likelihood. Indeed, in Appendix B in Wolpert (1992) there is an 
analysis of the case where we have a uniform sampling distribution T ( . ) ,  

zero-one loss, binary Y, and i i /m  - x (so Cy)Ts - CitD; see Appendix I3 
of this paper). It is there proven that E(C;,, 1 s. ni) = 1/2, independent of 

In accord with this, one expects that C&Ts and S are independent 
for uniform P ( f ) .  On the other hand, Vapnik-Chervonenkis (uniform 
convergence) theory tells us that P(c;,, ~ s I m )  is biased toward small 
values of cilD - s for low-VC dimension generalizers, and large m. This is 
true for any prior P(f), and therefore in particular for a uniform prior. It 
is also true even when i7  > nz, so that CkITS and Ci,D closely approximate 
each other. 

It should be emphasized that there is no contradiction between these 
VC results and the NFL theorems. Independence of s and c& does not 
imply that s and c;,Ts can differ significantly. For example, both the VC 
results and the NFL theorems would hold if for manyf P(c;,.,, 1 f .  m )  and 
P ( s  1 f .  m )  were independent but were both tightly clumped around the 
same value, i. 

Now let us  say we have an instance of such a "clumping" phe- 
nomenon, but do not know < (< being determined by (the unknown) 
f, among other things). We might be tempted to take the observed value 
of s as an indicator of the likely value of <. In turn, we might wish to 
view this likely value of < as an indicator of the likely value of c&. In 
this way, having observed a particular value of s, we could infer some- 
thing about c;,Ts (e.g., that it is unlikely to differ from that observed value 
of 5). However Theorem (9) says that this reasoning is illegal [at least 
for uniform P(f)]. Statistical independence is statistical independence; 
knowing the value of s tells you nothing whatsoever about the value of 
c& (see Wolpert 1994a for further discussion of how independence of s 
and c ; ) ~ ~  is compatible with the VC theorems). 

Intuitively, many of the computational learning theory results relating 
empirical error s and generalization error c:,, are driven by the fact that s 
is formed by sampling cilD (see Wolpert 1994a). However, for OTS c' the 
empirical error s cannot be viewed as a sample of c'. Rather s and c& are 
on an equal footing. Indeed, for single-valued targets and hypotheses, 
and no noise, s and cbTS are both simply the value c;lo has when restricted 
to a particular region in X. (The region is i lx  for s, X - i f x  for cbTS.) In 
this sense, there is symmetry between s and c:>Ts (symmetry absent for s 

s. 
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and chD). Given this, it should not be surprising that for uniform P(f), 
the value of s tells us nothing about the value of cbTs and vice versa. 

5.3 Implications for Vapnik-Chervonenkis Results. The s-independ- 
ence of the results presented above has strong implications for the uni- 
form convergence formalism for investigating supervised learning (Vap- 
nik 1982; Vapnik and Bottou 1993; Anthony and Biggs 1992; Natarajan 
1991; Wolpert 1994a). Consider zero-one loss, where the empirical er- 
ror s is very low and the training set size m is very large. Assume that 
our learning algorithm has a very low VC dimension. Since s is low 
and m large, we might hope that that low VC dimension confers some 
assurance that our generalization error will be low, independent of as- 
sumptions concerning the target. (This is one common way people try 
to interpret the VC theorems.) 

However according to the results presented above, low s, large m, 
and low VC dimension, by themselves, provide no such assurances con- 
cerning OTS error (unless one can somehow a priori rule out a uniform 
P(f)-not to mention rule out any other prior having even more dire 
implications for generalization performance). This is emphasized by the 
example given above where a tight confidence interval on the probability 
of cbTS differing from s arises solely from P(cbTS I m) and P(s  I m )  being 
peaked about the same value; s and cbTS are statistically independent, 
so knowing s tells you nothing concerning cbTS. Indeed, presuming cbTs 
is small due only to the fact that s, m, and the learning algorithm’s VC 
dimension are small can have disastrous real-world consequences (see 
the example concerning “We-Learn-It Inc.” in Wolpert 1994a). 

Of course, there are many other conditioning events one could con- 
sider besides the ones considered in this paper. And, in particular, 
there are many such events that involve empirical errors. For exam- 
ple, one might investigate the behavior of the uniformf-average of P(c I 
sA. s B ,  m,f), where SA and S B  are the empirical errors for the two algo- 
rithms A and B considered in Example (1) in Section (3). 

It may well be that for some of these alternative conditioning events 
involving empirical errors, one can find a priori distinctions between 
learning algorithms, dependences on s values, or the like. Although such 
results would certainly be interesting, one should be careful not to ascribe 
too much practical significance to them. In the real world, it is almost 
always the case that we know d and h in full, not simply functions of 
them like the empirical error. In such a scenario, it is hard to see why one 
would be concerned with a distribution of the form P[c 1 function(d), h],  
as opposed to distributions of the form P(c  I d )  [or perhaps P(c 1 d ,h ) ,  
or thef-average of P(c 1 d,f), or some such]. So since the NFL theorems 
say there is no a priori distinction between algorithms as far as P(c  I d )  is 
concerned, it is hard to see why one should choose between algorithms 
based on distributions of the form P[c Ifunction(d), h], if one does indeed 
know d in full. 
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5.4 Implications of the NFL Theorems for Active Learning Algo- 
rithms. Active learning (aka ”query-based learning,” or ”membership 
queries”) is where the learner decides what the points dx will be. Usually 
this is done dynamically; as one gets more and more training examples, 
one uses those examples to determine the ”optimal” next choices of d x ( i ) .  

As far as the EBF is concerned, the only difference between active 
learning and traditional supervised learning is in the likelihood. Rather 
than IID likelihoods like that in equation (3.1), in active learning each 
successivedx(i) isafunctionofthe (i-1) pairs { d x ( j  = l.i-l).dy(j = 1. i -  
I )}, with the precise functional dependence determined by the precise 
active learning algorithm being used. 

So long as it is true that P[dY( ,nr)  1 d x ( n r ) . f ]  is independent of f [x  # 
i f x (  n ~ ) ] ,  active learning has a vertical likelihood (see Appendix C). So all of 
the negative implications of the NFL theorems apply just as well to active 
learning as IID likelihood learning, and in particular apply to the kinds 
of active learning discussed in the computational learning community. 

5.5 Implications of the NFL Theorems for “Punting” Learning Algo- 
rithms. Some have advocated using algorithms that have an extra option 
besides making a guess. This option is to “punt,” i t . ,  refuse to make a 
guess. As an example, an algorithm might choose to punt because it 
has low confidence in its guess (say for VC theory reasons). It might 
appear that, properly constructed, such algorithms could avoid making 
bad guesses. If this were the case, it would be an assumption-free way 
of ensuring that iLhetl onegiiesses, the guesses are good. (One would have 
traded in the ability to always make a guess to ensure that the guesses 
one does make are good ones.) In particular, some have advocated using 
algorithms that add elements to d adaptively until (and if) they can make 
what they consider to be a safe guess. 

However the simple fact that a particular punting algorithm has a 
small probability of making a poor guess, by itself, is no reason to use 
that algorithm. After all, the completely useless algorithm that always 
punts has zero probability of making a poor guess. Rather what is of 
interest is how well the algorithm performs when it does guess, and/or 
how accurate its punt-signal warning is as an indicator that to make a 
guess would result in large error. To analyze this, I will slightly modify 
the definition of punting algorithms so that they always guess, but also 
always output a punt / no punt signal (and perhaps ask for more training 
set elements), based deterministically only on the d at hand. The issue 
a t  hand then is how the punt / no punt signal is statistically correlated 
with C. 

Examine any training set ii for which some particular algorithm out- 
puts a no punt signal. By the NFL theorems, for such a d, for uniform 
P ( . f ) ,  a vertical P ( d  1 f), and a homogeneous OTS error, P ( c  1 cl) is the 
same as that of a random generalizer, i.e., under those conditions, P ( c  I 
if. no punt) = . \(c)/r. As a direct corollary, P ( c  1 ur. no punt) = . l (c ) / r .  It 
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follows that P(c  1 no punt) = A ( c ) / r  (assuming the no punt signal arises 
while OTS error is still meaningful, so m’ < n). 

Using the same kind of reasoning though, we also get P(c  I punt) = 
A(c)/r, etc. So there is no statistical correlation between the value of the 
punt signal and OTS error. Unless we assume a nonuniform P(f), even 
if our algorithm “grows” d until there is a no punt signal, the value of 
the punt / no punt signal tells us nothing about C. Similar conclusions 
follow from comparing a punting algorithm to its ”scrambled” version, 
as in the analysis of nonhomogeneous error (see paper two). 

In addition, let A and B be two punting algorithms that are identical 
in when they decide to output a punt signal, but B guesses randomly 
for all test inputs q 6 d x .  Then for the usual reasons, As distribution 
over OTS error is, on average, the same as that of B, i.e., no better than 
random. This is true even if we condition on having a no punt signal. 

One nice characteristic of some punting algorithms-the characteristic 
exploited by those who advocate such algorithms-is that there can be 
some prior-free assurances associated with them. As an example, for all 
targets f ,  the probability of such an algorithm guessing and making an 
error in doing so is very small [see classes (1) and (2) below]: Vf, for 
sufficiently large m and nonnegligible E,  P(COTS > &.no punt I f .  m )  is 
tiny. 

However P(COTS > E ,  no punt I f. m )  in fact equals 0 for the always- 
punt algorithm. So one might want to also consider other distributions 
like P(COTS > E 1 no punt.f. m) or P(COTS < 1 - &.no punt 1 f. m )  to get 
a more definitive assessment of the algorithm’s utility. Unfortunately 
though, both of these distributions are highly f-dependent. (This illus- 
trates that thef-independent aspects of the punting algorithm mentioned 
in the previous paragraph do not give a full picture of the algorithm’s 
utility.) 

In addition, other f-independent results hardly inspire confidence in 
the idea of making a guess only when there is a no punt signal. As 
an illustration, restrict things so that both hypotheses k and targets are 
single-valued (and therefore targets are written as functions &), and there 
is no noise. Y is binary, and we have zero-one loss. Let the learning 
algorithm always guess the all 0s function, k*.  The punt signal is given 
if d y  contains at least one non-zero value. Then for the likelihood of 
(3.1), uniform ~(x), and n >> m, we have the following result, proven in 
Appendix E: 

Theorem 10. Fur the k’ learning algurithm,fur all targets d, such that Q(x)  = 0 
fur  mure than rn distinct x, E(COT~ I 4\ punt, m )  5 E ( C ~ T ~  I 4. nu punt, m).  

For n >> m, essentially all & meet the requirement given in Theorem 
(10); for such n and m, we do better to follow the algorithm’s guessing 
advice when we are told not to than we are told the guessing is good! 

In many respects, the proper way to analyze punting algorithms is 
given by decision theory. First, assign a cost to punting. (Formally, this 
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just amounts to modifying the form of P ( c  I f .  11. d )  for the case where h 
and d lead to a punt signal.) This cost should not be less than the minimal 
no-punting cost, or the optimal algorithm is to never guess. Similarly, it 
should not be more than the maximal no-punting cost, or the optimal al- 
gorithm never punts. Given such a punting cost, the analysis of a particu- 
lar punting algorithm consists of finding those P(f) such that E ( C ~ T ~  I in) 
is "good" (however defined). In lieu of such an analysis, one can find 
those P(f) such that E(CoTs I no punt. m )  < E ( C ~ T ~  I punt. m )  (e.g., one 
can analyze whether priors that are uniform in some sphere centered 
on h' and zero outside of it result in this inequality). Such analyses- 
apparently never carried out by proponents of punting algorithms-are 
beyond the scope of this paper however. (In addition, they vary from 
punting algorithm to punting algorithm.) 

5.6 Intuitive Arguments Concerning the NFL Theorems and Punt- 
ing Algorithms. Consider again the algorithm addressed in Theorem 
(10). For this algorithm, there are two separate kinds of 4: 

1. 0, such that the algorithm will almost always punt for a d of suffi- 

2. 4 such that the algorithm has tiny expected error when it chooses 

(Targets 4 with almost no xs such that $(x) = 1 are in the second class, 
and other targets are in the first class.) 

It might seem that this breakdown justifies use of the algorithm. After 
all, for large enough m', if the target is such that there is a nonnegligible 
probability that the algorithm does not punt, it is not in class 1, so if it 
does not punt error will be tiny. Thus it would seem that whatever the 
target (or prior over targets), if the algorithm has not punted, we can be 
confident in its guess. [Similar arguments can be made when the two 
classes distinguish sets of P(@)s  rather than 4s.I 

However, if we restate this, the claim is that E(C 1 no punt. m )  is tiny 
for sufficiently large in, for any prior over targets P ( $ ) .  (Note that for 
n >> rn and non-pathological T ( . ) ,  m' is unlikely to be much less than 
m.) This would imply, in particular, that it is tiny for uniform P(q5). 
However from the preceding subsection we know that this is not true. 
So we appear to have a paradox. 

To resolve this paradox, consider using our algorithm and observing 
the no punt signal. Now restate (1) and (2) carefully: In general, either 

1. The target is such that for sufficiently large nz' the algorithm will al- 
most always punt, but wheiz it does not punt, it usually makes sigizifcaizf 
errors, or 

2. The target is such that the algorithm has tiny expected error when 
it chooses not to punt. 

cient size sampled from 4, or 

not to punt. 
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Now there are many more 4s in class 1 than in class 2.  So even though 
the probability of our no-punt signal is small for each of the 4s in class 
1 individually, when you multiply by the number of such 4, you see 
that the probability of being in class 1, given that you have a no-punt 
signal, is not worse than the probability of being in class 2, given the 
same signal. In this sense, the signal gains you nothing in determining 
in which class you are in, and therefore in determining likely error.3 

So at a minimum, one must assume that P ( 4 )  is not uniform to have 
justification for believing the punt/no punt signal. Now one could argue 
that a uniform P ( 4 )  is highly unlikely when there is a no-punt signal, i.e., 
P[no punt I N = uniform P( 4). m] is very small, and that this allows one 
to dismiss this value of a if we see a no punt signal. Formally though, (1 

is a hyperparameter, and should be marginalized out: it is axiomatically 
true that P ( 4 )  = J d o P ( 4  I o)P(a) and is fixed beforehand, independent 
of the data. So the presence/absence of a punt signal cannot be used to 
"infer" something about P( d), formally speaking [see the discussions of 
hierarchical Bayesian analysis and empirical Bayes in Berger (1985) and 
Bernard0 and Smith (1994)l. More generally, the NFL theorems allow us 
to "jump a level," so that classes 1 and 2 refer to as rather than 4s. And 
at this new level, we again run into the fact that there are many more 
elements in class 1 than in class 2. 

To take another perspective, although the likelihood P(no punt I class. 
rn) strongly favors class 2, the posterior need not. Lack of appreciation for 
this distinction is an example of how computational learning theory relies 
almost exclusively on likelihood-driven calculations, ignoring posterior 
calculations. 

It may be useful to directly contrast the intuition behind the class 
1-2 reasoning and that behind the NFL theorems: The class 1-2 logic 
says that given a 4 with a nonnegligible percentages of Is, it's hugely 
unlikely to get all 0s in a large random data set. Hence, so this intuitive 
reasoning goes, if you get all Os, you can conclude that 4 does not have 
a nonnegligible percentages of Is, and therefore you are safe in guessing 
0s outside the training set. The contrasting intuition: say you are given 
some particular training set, say of the first K points in X, together with 
associated Y values. Say the Y values happen to be all 0s. Obviously, 
without some assumption concerning the coupling of 4s behavior over 
the first K points in X with its behavior outside of those points, 4 could 
have any conceivable behavior outside of those points. So the fact that 
it is all 0s has no significance, and cannot help you in guessing. 

"11 that is being argued in this discussion of classes (1) and (2) is that the absence 
of a punt signal does not provide a reason to believe error is good. This argument does 
not directly address whether the presence of a punt signal gives you reason to believe 
you are in class (l), and therefore is correlated with bad error. The explanation of why 
there is no such correlation is more subtle than simply counting the number of 4s in 
each class. It involves the fact that there are actually a continuum of dasses, and that 
for fixed 4, raising s (so as to get a punt signal) lowers OTS (!) error. 
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It should be emphasized that none of the reasoning of this subsection 
directly addresses the issue of whether the punting algorithm has good 
”head-to-head minimax” OTS behavior in some sense (see paper two). 
That is an issue that has yet to be thoroughly investigated. In addition, 
recall that no claims are being made in this paper about what is (not) 
reasonable in practice; punting algorithms might very well work well in 
the real world. Rather the issue is what can be formally established about 
how w7elI they work in the real world without making any assumptions 
concerning targets. 

5.7 Differences between the NFL Theorems and Computational 
Learning Theory. Despite the foregoing, there are some similarities be- 
t\veen the NFL theorems and computational learning theory. In particu- 
lar, \\Then all targets are allowed-as in the NFL theorems-PAC bounds 
on the error associated with 5 = 0 are extremely poor (Blumer t’t nl. 
1987, 1989; Dietterich 1990; Wolpert 1994a). However there are impor- 
tant differences between the NFL theorems and this weak-PAC-bounds 
phenomenon. 

1. For the most part, PAC is designed to give positive results. In 
particular, this is the case with the PAC bounds mentioned above. 
(More formally, the bounds in question give an upper bound on 
the probability that error exceeds some value, not a lower bound.) 
However lack of a positive result is not the same as  a negative 
result, and the NFL theorems are full-blown negative results. 

2. PAC (and indeed all of computational learning theory) has noth- 
ing to say about these data (it,., Bayesian) scenarios. They only 
concern data-averaged quantities. PAC also is primarily concerned 
with polynomial versus exponential convergence issues, i.e., asymp- 
totics of various sorts. The NFL theorems hold even if one does not 
go to the limit, and hold even for these data scenarios. [See also 
Wolpert (1994a) for a discussion of how PAC’s being exclusively 
concerned with convergence issues renders its real-world meaning- 
fulness debatable, at best.] 

3. The PAC bounds in question can be viewed as saying there is no 
universally good learning algorithm. They say nothing about the 
possibility of whether some algorithm 1 may be better than some 
other algorithm 2 in most scenarios. As a particular example, noth- 
ing in the PAC literature suggests that there are as many (appropri- 
ately weighted) fs for which a boosted learning algorithm (Drucker 
Et 01. 1993; Shapire 1990) performs worse than its unboosted version 
as there are for which the reverse is true. 

4. The PAC bounds in question do not emphasize the importance of a 
vertical likelihood, they do not emphasize the importance of homo- 
geneous noise when the target is a single-valued function; they do 
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not emphasize the importance of whether the loss function is ho- 
mogeneous; they do not invoke "scrambling" (see paper two) for 
nonhomogeneous loss functions (indeed, they rarely consider such 
loss functions); they do not concern averaging over pairs of ks  (in 
the sense of Section (4) of paper two), etc. In all this, they are too 
general. Note that this overgenerality extends beyond the obvious 
problem that they are "(sampling) distribution free." Rather they 
are too general in that they are independent of many of the features 
of a supervised learning problem that are crucially important. 

5. Computational learning theory does not address OTS error. Es- 
pecially when m is not infinitesimal in comparison to n and/or 
~ ( x )  is highly nonuniform, computational learning theory results 
are changed significantly if one uses OTS error (see Wolpert 1994a). 
And even for infinitesimal m and fairly uniform ~ ( x ) ,  many distri- 
butions behave very differently for OTS rather than IID error (see 
Section 5.2). 

Appendix A. Detailed Exposition of the EBF 

This Appendix discusses the EBF in some detail. Since it is the goal of 
this paper to present as broadly applicable results as possible, care is 
taken in this Appendix to discuss how a number of different learning 
scenarios can be cast in terms of the EBF. 

Notation 

0 In general, unless indicated otherwise, random variables are written 
using upper case letters. A particular instantiation value of such a 
random variable is indicated using the corresponding lower case 
letter. Note though that some quantities (e.g., parameters like the 
size of the spaces) are neither random variables nor instantiations 
of random variables, so their written case carries no significance. 

0 When clarity is needed, the argument of a P ( . )  will not be used to 
indicate what the distribution is; rather a subscript will denote the 
distribution. For example, PF(~) means the prior over the random 
variable F (targets), evaluated at the value h (a particular hypoth- 
esis). This is common statistics notation. (Note that with condi- 
tioning bars, this notation leads to expressions like "PAls(c  1 d)," 
meaning the probability of random variable A conditioned on vari- 
able B,  evaluated at values c and d, respectively.) 

0 Also in accord with common statistics notation, "E(A 1 b)" will be 
used to mean the expectation value of A given B = b, i.e., to mean 
J' d a a P ( a  1 b) .  (Sums replace integrals if appropriate.) This means 
in particular that anything not specified is averaged over. So for 
example, E(A I b )  = ,[ dc da a P(a I b. c) P(c  I b )  = J dc E ( a  I b. c) P ( c  1 
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b ) .  When it is obvious that their value is assumed fixed and what 
it is fixed to, sometimes I will not specify variables in conditioning 
arguments. 

0 I will use 11 and i' to indicate the (countable though perhaps infinite) 
number of elements in the set X (the input space) and the set Y (the 
output space), respectively. (X and Y are the only case in this paper 
where capital letters do not indicate random variables.) Such cases 
of countable X and Y are the simplest to present, and always obtain 
in the real world where data are measured with finite precision 
instruments and are manipulated on finite size digital computers. 

A generic X value is indicated by x, and a generic Y value by y. 
Sometimes I will implicitly take Y and/or X to be sets of real numbers, 
sometimes finely spaced. (This is the case when talking about the "ex- 
pected value" of a Y-valued random variable, for example. j 

The Primary Random Variables 

0 In this paper, the "true" or "target" relationship between (test set) 
inputs and (test set) outputs is taken to be an X-conditioned dis- 
tribution over Y [i.e., intuitively speaking, a P(y 1 x)]. In other 
words, where S, is defined as the r-dimensional unit simplex, the 
"target distribution" is a random \miable mapping X + S,. Since 
X and Y are simply sets and not themselves random variables, this 
is formalized as follows: 

Let F be a random variable taking values in the ri-fold Cartesian prod- 
uct space of simplices s,. Letf be a particular instantiation of that vari- 
able, i.e., an element in the n-fold Cartesian product space of simplices 
S,. Then f can be viewed as a Euclidean vector, with indices given by 
a value s E X and y E Y. Accordingly, we can indicate a component 
o f f  by writing f(x.y). So for all .Y, y, fix.!/) 2 0, and for any fixed x, 
X , , f ( s  y) = 1. 

This defines the random variable F. The formal sense in which this P 
can be viewed as an "X-conditioned distribution over Y" arises in how it 
is statistically related to certain other random variables (specified below) 
taking values in X and in Y. 

0 In a similar fashion, the generalizer's hypothesis is an "X-conditioned 
distribution over Y," i.e., the hypothesis random variable H takes 
\ d u e s  in the ir-fold Cartesian product space of simplices S, and 
components of any instantiation h of H can be indicated by h(x.!y). 

0 If for all s, i i ( s . y )  is a Kronecker delta function (over y), h is called 
"single-valued," and similarly for f. In such a case, the distribution 
in question reduces to a single-valued function from X to Y .  

0 The value d of the training set random variable is an ordered set of 
u i  input-output pairs, or "examples." Those pairs are indicated by 
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dx( i ) ,  dy(i){i = 1 . .  . m}. The set of all input values in d is dx and 
similarly for d y .  m' is the number of distinct values in d x .  

0 The cost C is a real-valued random variable. 
0 The primary random variables are such target distributions F ,  such 

hypothesis distributions H, training sets D, and real-world "cost" 
or "error" values C measuring how well one's learning algorithm 
performs. They are "coupled" to supervised learning by imposing 
certain conditions on the relationship between them, conditions that 
are discussed next. 

The Relationship between C, F, and H ,  Mediated by Q, YE, and Yff. 
It will be useful to relate C to F and H using three other random variables. 
"Testing" (involved in determining the value of C) is done at the X value 
given by the X-valued random variable Q. Y values associated with the 
hypothesis and Q are given by the Y-valued random variable YH (with 
instantiations yH), and Y values associated with the target and Q are 
given by the Y-valued random variable YF (with instantiations yF). 

All of this is formalized as follows. 

0 The F random variable parameterizes the Q-conditioned distribu- 
tion over YF : P(YF 1 f .  q )  = f ( 4 . y ~ ) .  In other words, f determines 
how test set elements YF are generated for a test set point q. So 
YF and Q are the random variables whose relationship to F allows 
F to be intuitively viewed as an "X-conditioned distribution over 
Y"-see above. 

0 The variable YH meets similar requirements: P(YH 1 k. 9) = h(q. yH), 

and this relationship between YH, Q, and H is what allows one to 
view H as intuitively equivalent to an "X-conditioned distribution 
over Y." 

0 For the purposes of this paper, the random variable cost C is de- 
fined by C = L(YH. YF), where L( . .  .) is called a "loss function." As 
examples, zero-one loss has L(a ,  b)  = 1 - h(a. b),  where h(a. b )  is the 
Kronecker delta function, and quadratic loss has L(u> b )  = (a - b)2.  
(Zero-one loss is assumed in almost all of computational learning 
theory.) 

It is important to note though that in general C need not cor- 
respond to such a loss function. For example, "logarithmic scor- 
ing" has c = - C,f(q> y) In[k(q. y)],  and does not correspond to any 
L(YF,YH). 

0 For many Ls the sum over y F  of b[c.  L(yH. yF)] is some function 
h ( c ) ,  independent of YH. I will call such Ls "homogeneous." In- 
tuitively, such Ls have no a priori preference for one Y value over 
another. As examples, the zero-one loss is homogeneous. So is the 
squared difference between YF and yli if they are viewed as angles, 
L(YF. YH) = [(YF - Y H J  mod TI'. 
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Note that one can talk of an L’s being homogeneous for certain values 
of c. For example, the quadratic loss is not homogeneous over all c, but it 
is for i = 0. The results presented in this paper that rely on homogeneity 
of L usually hold for a particular c so long as L is homogeneous for that 
c, even if L is not homogeneous for all c. 

The Relationship between F ,  D and Q 

Note thatf is a distribution governing test set data (it governs the 
outputs associated with q) ,  and in general it need not be the same 
as the distribution governing training set data. Unless explicitly 
stated otherwise though, I will assume that both training sets and 
test sets are generated viaf. 

Often when training and testing sets are generated by the same 
P(y 1 x),  the training set is formed by iterating the following “inde- 
pendent identically distributed” (IID) procedure: Choose X values 
according to a ”sampling distribution” a(x), and then sample f at 
those points to get associated Y values.“ More formally, this very 
common scheme is equivalent to the following ”likelihood,” pre- 
sented previously as equation 3.1: 

Pid  I f )  = P(dY / f . d x ) P ( d x  I f )  
= P(dy I f .  I f x  j Pi&) (by assumption) 

= IT{ i ; [dx( i ) I f [ i l x ( i ) .  &(i ) j}  
11. 

r = l  

There is no a priori reason for P ( d  1 f )  to have this form, however. 
For example, in “active learning” or “query-based“ learning, successive 
LTalues (as i increases) of d x ( i )  are determined by the preceding values of 
& ( i )  and dy(i) .  As another example, typically P ( d  I f )  will not obey equa- 
tion (3.1) if testing and training are not governed by the same P(y 1 x).  
(Recall that f governs the generation of test sets.) To see this, let t be the 
random variable P(!y 1 x )  governing the generation of training sets. Then 
P ( d  I f )  = ,I’ dfP(tf 1 t )  P ( t  I fi. Even if P ( d  I t )  = n : ’ ~ , { ~ i [ d , ( i ) ] f [ d x ( i ) . d , ( i ) ] } ,  
unless P ( f  I f j  is a delta function about t = f ,  P ( d  I f )  need have the form 
specified in equation 3.1. 

I will say that P ( d  1 f )  is ”vertical” if it is independent of the values 
of f(s @ d x ) .  Any likelihood of the form given in equation (3.1) is 
vertical, by inspection. In addition, as discussed in Section 5, active 

‘In general, ti itself could be a random variable that can be estimated from the data, 
that is perhaps coupled to other random variables (e.g., f), etc. However here I make 
thc usual assumption in the neural net and computational learning literature that 71 is 
fixed. This is technically known as a “filter likelihood,” and has powerful implications 
(we Wolpert 1994b). 
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learning usually has a vertical likelihood. However, some scenarios 
in which t #f do not have vertical  likelihood^.^ 

0 In the case of ”IID error” (the conventional error measure), 
P(q I d) = ~ ( q ) .  In the case of OTS error, P(q  I d) = [S(9 $! d x ) n ( q ) ] /  
[&6(q $! d x ) ~ ( q ) ] ,  where b(z )  = 1 if z is true, 0 otherwise. Strictly 
speaking, OTS error is not defined when m‘ = n. 

Where appropriate, subscripts OTS or IID on c will indicate 
which kind of P(q  I d) is being used. 

Function + Noise Targets 
0 In this paper I will consider in some detail those cases where we 

only allow thosef that can be viewed as some single-valued func- 
tion 4 taking X to Y with a fixed noise process in Y superimposed.6 
To do this, I will (perhaps only implicitly) fix a noise function N 
that is a probability distribution over Y, conditioned on X x Y; N 
is a probability distribution over yF, conditioned on the values of q 
and $(q ) .  [Note that there are rn such functions I j ( . ) . ]  

Given N(.), each 4 specifies a unique f$, via P(yf I f4. q )  = f4(9. y ~ )  = 

N[YF I q .d (q ) ]  = P(YF I q3  4). Accordingly, all the usual rules concerning f 
apply as well to 4. [For example, P(h 1 d > 4 )  = P(h 1 d). ]  When I wish to 
make clear what 4 setsf, I will writef4, as above; 4 simply serves as an 
index onf .  [In general, depending on N(.), it might be that more than 
one (h labels the samef, but this will not be important for the current 
analysis.] So when I say something like ”vertical P(d I 4)’’ it is implicitly 
understood that I mean vertical P ( d  1 f4). 

0 When I say that I am ”only allowing” these kinds off, I will mean 
that whenever ’If” is written, it is assumed to be related to a 0 
in this manner-all other f implicitly have an infinitesimal prior 
probability. 

0 Note that the N(.) introduced here is the noise process operating in 
the generation of the test set, and need not be the same as the noise 

5As an example, assume that f is some single-valued function from X to Y, 9, so 
that P(YF I f@. q j  = 6 [ y ~ .  4(4)] .  However, assume that d is created by corrupting Q with 
both noise in X and noise in Y. This can be viewed as a “function + noise” scenario 
where the noise present in generating the training set is absent in testing. (This case is 
discussed in some detail below.) 

As an example of such a scenario, viewing any particular pair of X and Y val- 
ues from the training set as random variables Xi and Yt, one might have Yt = 
Cx, y(Xts X’) 4(X’ )  + E, where X’ is a dummy X variable, y(.. . j  is a convolutional pro- 
cess giving noise in X, and E is a noise process in Y. (Strictly speaking, this particular 
kind of Y-noise requires that r = x, as otherwise Ex, y(x.x’jd(x‘j + E might not lie in 
Y.) 

For this scenario, t ff. In addition, P(d I f )  does not have the form given in equation 
3.1. In particular, due to the convolution term, P(d I f )  will depend on the values of 
f = 4 for x @ d x ;  the likelihood for this scenario is not vertical. 

6Noise in X of the form mentioned in footnote 5 will not be considered in this paper. 
The extension to analyze such noise processes is fairly straightforward however. 
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process in the generation of the training set. As an example, it is 
common in the neural net literature to generate the training set by 
adding noise to a single-valued function from X to Y, o(.), but to 
measure error by how well the resulting h matches that underlying 
o( .), not by how well YH values sampled from h match Yr values 
formed by adding noise to o ( ' ) .  In the o-N terminology, this would 
mean that although P(rf I f) may be formed by corrupting some 
function o(.) with noise (in either X and/or Y), P(yF 1 f. 9). which 
is used to measure test set error, is determined by a noise-free N(.), 

0 Of special importance will be those noise-processes for which for 
each q, the uniform o-average of P(y/- 1 q. o )  is independent of y, . 
(Note this does not exclude q-dependent noise processes). I will call 
such a (test-set) noise process "homogeneous." Intuitively, such 
noise processes have no a priori preference for one Y value over 
another. As examples, the noise-free testing mentioned just above 
is homogeneous, as is a noise process that when it takes in a value 
of 0(9) ,  produces the same value with probability z and all other 
Lralues with (identical) probabilities (1 - z)/( r - 1). 

NIyr 1 q .  oiq)]  = q y , .  oiq)]. 

Coupling All This to Supervised Learning 

0 Any (!) learning algorithm (or "generalizer") is simply a distribu- 
tion P ( h  1 d ) .  It is "deterministic" i f  the same d always gives the 
same lz [i.e., if  for fixed rl, P(lr 1 11) is a delta function about one 
particular 111. 

0 There are many equalities that are assumed in supervised learn- 
ing, but that do not merit explicit delineation. For example, it is 
implicitly assumed that P(It 1 q. i l )  = P ( / I  1 d) ,  and therefore that 

0 One assumption that does merit explicit delineation is that P ( h  1 
f . d )  = P(It  1 d )  (i.e., the learning algorithm only sees d in making 
its guess, not f ) .  This means that P(I1.f I i f )  = P ( h  1 d )  P(f 1 d ) ,  and 
therefore P ( - f )  1 t . d )  = P(f I d ) .  

As an example of the importance of this assumption, note that it 
implies that P(yr 1 y,!. d .  q )  = Ply/ j [ I .  q ) .  

Pi[! d . h )  = P i q  1 d \ .  

Proof. ExpandP(yF y f i . ~ l . q )  = 1 tfff(q.y/)P(f i Lf .171 1' [ f h h ( q . y , ~ ) . P ( h  1 
f .d.q).  Since P ( h  j f.d.q) = Pill I il), this integral is proportional to 

I Lfff(q.yF) P(f 1 d . q ) ,  where the proportionality constant depends on d ,  
ylf ,  and q. However .I i!ff(q.yi)P(f 1 d . q i  = P(y/ 1 d . q ) .  Due to nor- 
malization, this means that the proportionality constant equals 1, and we 
have established the proposition. QED. 

Our assumption does not imply that Piyi j yH. d 1 -- P(y/ I d ) ,  however. 
Intuitively, for a fixed learning algorithm, knov:ii.g !it, a n d  L /  tells you 
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something about q, and therefore (in conjunction with knowledge of d) 
something about YF, that d alone does not. 

0 The ”posterior” is the Bayesian inverse of the likelihood, P(f 1 d). 
The phrase “the prior” usually refers to P(f). 
Some schemes can be cast into this framework in more than one 
way. As an example, consider softmax (Bridle 1989), where each 
output neuron indicates a different possible event, and the real val- 
ues the neurons take in response to an input are interpreted as 
input-conditioned probabilities of the associated events. For this 
scheme one could either (1) take Y to be the set of “possible events,” 
so that the k produced by the algorithm is not single-valued, or 
( 2 )  take Y to be (the computer’s discretization of) the real-valued 
vectors that the set of output neurons can take on, in which case k 
is single-valued, and Y itself is interpreted as a space of probability 
distributions. Ultimately, which interpretation one adopts is deter- 
mined by the relationship between C and H. (Such relationships 
are discussed below.) 

“Generalization Error“ 

0 Note that E(C 1 f . k . d )  = CY,,.YFqE(C 1 f . k . d . ~ ~ . y ~ . q ) P ( y ~ . y r . q  1 
f. k .  d ) .  Due to our definition of C, the first term in the sum equals 
L ( y ~ . p ) .  The second term equals P(YH I k . q . f . d . y r ) P ( y f  I 4.f.d. 
k )  P(q  1 d. f k ) .  This in turn equals k (q .  y ~ ) f ( q .  YF) P(q  1 f .  h. d).  In 
addition, P(q  If. k .  d )  = P(9 I d) always in this paper. Therefore 
E(C I f . k - d )  = cy,, yF,y L(YH3 YF) k ( 9 >  Y H ) f ( 9 .  YF) P ( 9  I d ) .  

In much of supervised learning, an expression like that on the right- 
hand side of this equation is called the ”generalization error.” In other 
words, instead of the error C used here, in much of supervised learning 
one uses an alternative error C’, defined by C(f. k .  d) E E(C I f .  k .  d ) ,  i.e., 
P(c’ 1 f . k . d )  = h[c’.E(C 1 f . k . d ) ] .  

Note that in general, the set of allowed values of C is not the same 
as the set of allowed values of C’. In addition, distributions over C 
do not set those over C’. For example, knowing P(c I d) need not 
give P(c’ 1 d) or vice versa.7 However many branches of supervised 

71f there are only two possible L( . ,  .) values (for example), P(c‘ I d) does give P(c  1 d). 
This is because P(c’ 1 d) gives E(C’ I d) = E(C 1 d) (see below in Appendix A), and since 
there are two possible costs, E(C 1 d) gives P(c  I d). It is for more than two possible cost 
values that the distributions P(c’ 1 d )  and D(c 1 d) do not determine one another. In fact, 
even if there are only two possible values of L ( . .  .), so that P(c’ I d) sets P(c  I d), it does 
not follow that P(c 1 d) sets P(c’ 1 d) .  As an example, consider this case where IZ = m’+2, 
and we have zero-one loss. Assume that given some d, P(f I d) and P(h 1 d) are such that 
either h agrees exactly withf for OTS q or the two never agree, with equal probability. 
This means that for zero-one OTS error, P(c  1 d) = S(c,O)/2 + O(c. 1)/2. However we 
would get the same distribution if all four possible agreement relationships between 
h andf for the off-training set q were possible, with equal probabilities. And in that 
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learning theory (e.g., much of computational learning theory) are 
concerned with quantities of the form ”P(error > E 1 . . .).’’8 For 
such quantities, whether one takes ”error” to mean C or (as is con- 
ventional) C’ may change the results, and in general one cannot 
directly deduce the result for C from that for C’ (or vice versa). 

Where appropriate, subscripts OTS or IID on c’ will indicate 
which kind of P(q I d) is being used. 

0 Fortunately, most of the results derived in this paper apply equally 
well to both probabilities of C and probabilities of C’. For reasons 
of space though, I will work out the results explicitly only for C. 
However, note that we can immediately equate expectations of C 
that are not conditioned on q, YH, or y~ with the same expectations 
of C’. For example, 

E ( C  I d )  = 1 d h d f E ( C  I f . h . d ) P ( f . h  I d )  

= 1 dhdfC’(f.h.d)P(f,h 1 d )  

= 1 dhdfE(C’ l f . h . d ) P ( f . h  I d )  = E(C’ I d )  

So when cast in terms of expectation values, any (appropriately 
conditioned) results automatically apply to C’ as well as C. 

Miscellaneous 

0 For most purposes, it is implicitly assumed that no probabilities 
equal zero exactly (although some probabilities might be infinites- 
imal). That way we have never have to worry about dividing by 
probabilities, and in particular never have to worry about whether 
conditional probabilities are well-defined. So as an example, phrases 
like ”noise-free” are taken to mean infinitesimal noise rather than 
exactly zero noise. Similarly, where needed, integrals over f are 
implicitly restricted away from fs having one or more components 
equal to zero. 

0 It is important to note that in general, for nonpathological 7 r ( . ) ,  

in the limit where FZ >> r,  distributions over cIlD are identical to 
distributions over c&. In this sense theorems concerning OTS error 
immediately carry over to IID error. This is proven formally in 
Appendix B. 

second case, we would have the possibility of C’ values that are impossible in the first 
case (e.g., c = 1/2). QED. 

“In general, whether ”error” means C or C’, this quantity is of interest only if the 
number of values error can have is large. So for example, it is of interest for C’ if r is 
large and we have quadratic loss. 
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Appendix B. Proof That Distributions Over Cf,, Equal Those Over CbTS 
Whenever n >> Y, for Nonpathological a(-) 

To prove the assertion, with slight abuse of terminology write Cf,, = 

CbTS~(X - dx) + Cks.ir(dx), where ”TS” means error on the training set, 
defined in the obvious way, and T ( A )  = C,,,a(x) (see Wolpert et al. 
1995). Then for any set of one or more random variables Z taking value 
z ,  we have 

Now again abuse terminology slightly and write 

where the statistical dependencies of CbTS and Cks are made explicit by 
writing them as functions. Plugging in we get 

Define E F maxdx r(dx), so mindx T(X - d x )  = 1 - E .  Now whenever 
n >> m, so long as there are no sharp peaks in T( . ) ,  E + 0. However, 
because a delta function is not a continuous function, taking the limit as 
E -+ 0 of our expression for P(cf,, I z )  is not immediately equivalent to 
setting the a(X - d x )  and . ir(dx) inside the delta function to 1 and to 0, 
respectively. We can circumvent this difficulty rather easily though. To 
do that, first define 
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Then write 

x P(d,f, h 1 z )  

for some f i  where I f i /  5 6. 
Now for nonpathological z ,  P(c;,, I z )  is a continuous function of c;,, 

as n and/or T ( . )  are varied. (Recall, in particular, that in this paper, no 
event has exactly zero probability; see Appendix A.) So for such a Z, for 
E sufficiently small, h + 0 and therefore f i  --t 0, and we can approximate 

But this just equals Pc;,T512(c~lD 1 z). So for n >> rn and nonpathological z 
and T ( . ) ,  the distribution over c;DD is the same as that over cLTs. QED. 

Appendix C. Miscellaneous Proofs - 

For clarity of the exposition, several of the more straightforward proofs 
in the paper are collected in this appendix. 

Proof of Lemma 1. Write P(c I f .  d )  = C,  P(c 1 !/H. yr. q.f. d )  P ( ~ H  I 
. .  y p . q . f . d ) P ( y p , q  I f . d ) .  Rewriting the summand, we get P(c I f.d) = 
~ ~ / , i . y l  .q  b[c. L ( ! / H .  Y F ) ]  p( ! /H  1 !/F*f. 4. d )  p(yF. 4 1 f - d) .  

NOW P(YH I ! / ~ . f % q . d )  = , I  dhP(yH 1 y ~ . h . f . q . d ) P ( h  I ~ p . f . 9 . d )  = 
,I' d h P ( y j ,  I h . q . d ) P ( h  I q . d )  [see point (11) in the EBF section]. This 
just equals P(YH I 4 . d ) .  [However it is not true in general that P(yf, I 
! l F . d )  = P(yH I d )  (see Wolpert d al. 1995).] Plugging in gives the result. 
QED. 

Proof of the Claim Concerning the "Random Learning Algorithm," 
Made Just Below Lemma (1). By Lemma 1, P(c  I f .  d )  = &,I,,Cr ,4 h[c.  L(yl,. 
! / r ) ]  P(!/JI  I 9. d )  P(YF I 4.f) P ( q  I d ) .  However, for OTS error q @ d x ,  and 
therefore for the random learning algorithm, for all q and d in our sum, 
P(yH I 4.11) = l / u ,  independent of YH (recall that there are Y elements 
in Y). If we have a symmetric homogeneous loss function, this means 
that we can replace & / F j  h[c.  L(yH. yr)] P(yH I q. d )  with A(c)/v. Since this 
is independent of d andf ,  P ( c  I d )  = A(c)/r  for all training sets d ,  as 
claimed. QED. 

Proof of the "Implication of Lemma (l)," Made Just Below Lemma 
(1). Uniformly average the expression for P(c I f. d) in Lemma (1) over all 
targetsf. The only placef occurs in the sum in Lemma (1) is in the third 
term, P ( ~ F  I 9.1). Therefore our average replaces that third term with 
some function func(yF. 4) .  By symmetry though, the uniform f-average 
of that third term in the sum must be the same for all test set inputs 
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q and outputs yF. Accordingly func(yF.q) is some constant. Now the 
sum over YF of this constant must equal 1 [to evaluate that sum of the 
f-average of P(yF 1 q . f ) ,  interchange the sum over YF with the average 
overf]. Therefore our constant must equal l / v .  The implication claimed 
is now immediate. QED. 

Proof of Theorem (2). We can replace the sum over all q that gives 
P(c I f . d )  [Lemma (1)l with a sum over those q lying outside of dx .  
Accordingly, for such a P(q 1 d) ,  P(c 1 f . d )  is independent of the values 
of f ( x  E d x ) .  (For clarity, the second argument off is being temporarily 
suppressed.) 

Noting that P(d I f )  is vertical, next average both sides of our equation 
for P(c  1 f .  m )  uniformly over all f and pull the f-average inside the sum 
over d. Since P(c 1 f. d) and P(d  1 f )  depend on separate parts off [namely 
f ( x  $ d x )  andf(x E d x ) ,  respectively], we can break the average over f 
into two successive averages, one operating on each part off, and thereby 
get 

But since P(c  I f .  d) is independent of the values of f ( x  E d x ) ,  uniformly 
averaging it over allf(x $ dx )  is equivalent to uniformly averaging it over 
all f .  By Theorem (l), such an average is independent of d. Therefore we 
can pull that average out of the sum over d,  and get Theorem ( 2 ) .  QED. 

Proof of Theorem (3). Write P ( c  I d) for a uniform P ( f )  x J’ d f P ( c  1 
d , f )  P(d If), where the proportionality constant depends on d .  Break up 
the integral overf into an integral overf(x1 E d x )  and one overf(x @ d x ) ,  
exactly as in the proof of Theorem ( 2 ) .  Absorb .r d f ( x  E d x )  P(d 1 f )  into 
the overall (d-dependent) proportionality constant. By normalization, the 
resultant value of our constant must be the reciprocal of df(x @ d x ) l .  
QED. 

Proof of Theorem (7). J d a P ( c  1 nz.0) = J dct[&,,P($ 1 m,ck)P(c 1 
rn. 0.4)], where the integral is restricted to the r”-dimensional simplex. 
This can be rewritten as J’ d ~ [ & ,  06 P(c  I q5. rn. o.)], since we assume that 
the probability of d, has nothing to do with the number of elements in 
d. Similarly, once 4 is fixed, the probability that C = c does not de- 
pend on (Y, so our average equals J’ da[& a d  P(c 1 @ m)] .  Write this as 
&, P(c I 4> m ) [  [ da n4]. By symmetry, the term inside the square brackets 
is independent of 4. Therefore the average over all P ( 4 )  of P(c  1 rn) is 
proportional to & P(c I 4. m).  Using Theorem (5) and normalization, this 
establishes Theorem (7). QED. 

Proof of Corollary (3). Follow along with the proof of Theorem (7). 
Instead of J’ dtr 08, we have J da G(tr)ab. (For present purposes, the 
delta and Heaviside functions that force (L to stay on the unit simplex 
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arc implicit.) By assumption, G(tr) is unchanged under the bijection of 
replacing all vectors o,  with new vectors identical to the old, except that 
the components for i = o and i = o' are interchanged. This is true for all 
C'I and tl. Accordingly, our integral is independent of o, which suffices 
to prove the result. QED. 

Proof of Theorem (9). To evaluate P ( c  I s . d )  for uniform P(f), write 
it as ,I d f P ( c  1 s.Li.f)P(f 1 d . s ) .  Next write P( f 1 d . s )  = P ( s  I f .d)P(f  1 
d ) / P ( s  I d) .  Note though that P ( s  I f .  d )  = P ( s  1 dj (see beginning of Section 
S), and recall that we are implicitly assuming that P ( s  1 d )  # 0).  So we 
get P ( c  1 s . d )  = 1 d f P ( c  1 s . d . f ) P ( d  1 f), up to an overall d-dependent 
proportionality constant. Now proceed as in the proof of Theorem ( 2 )  by 
breaking the integral into two integrals, one overf(x E dx), and one over 
f i x  4 d x ) .  The result is P ( c  j s.d,! = .\(c)/r, up to an overall d-dependent 
proportionality constant. By normalization, that constant must equal 1. 
This establishes Theorem (9). QED. 

Example of Non-NFL Behavior of s-Conditioned Distributions. Let 
P ( h  1 d )  = $ ( h . / i - )  for some Ii', let ~ ( s )  be uniform, use zero-one loss, 
assume a noise-free IlD likelihood, and take ni = 1. Then we can write 

.sj ( i i  - 1). [Note that Ci,D is independent of d, and that for zero-one loss 
17 x C;,[](f. / I % )  is the number of disagreements between h* andf over all 
of X.] No matter what f is, this grows as s shrinks. Since CoTs can have 
only two values, this means that as s grows, P(COTS 1 f. s. 111 = 1) gets 
biased toward the lower of the two possible values of COTS. So we do not 
have NFL behavior for the uniform average over f of P ( c  1 f .  s. m)-that 
average depends on the empirical error s. 

E(C<>TS 1 s.f.m = 1) = E(C<JTs 1 s.f.??i = 1.h  = / I * )  = [ n C { ~ D ( f . h * ) -  

Proof That Active Learning Has a Vertical Likelihood. Let dk re- 
fer to the first k input-output pairs in the training set d, and d(i)  to 
the ith such pair. Then Pid,,, 1 f )  = P [ d ( m i  I f .d, , ,-~] P(d,,, - 1  I f )  = 
P i d ~ ( n 1 )  I d ~ ( m ) . f . d , , , - ~ ]  P[dxjni) 1 f . i f , , , - ~ ] P ( d , , , - ~  I f). By hypothesis, in 
active learning P[dX(m) 1 f.d,,,-,] = P[dx(in) I c f , , , - l j .  So long as it is also 
true that Pjdy(771) 1 dx(tn).f. dl,l-lj = P [ d y ( t n )  1 dX(m).f]  is independent of 
f [ x  # dxini)], by induction we have a vertical likelihood. 

Appendix D. Proof of Theorem (8) - 

The task before us is to calculate the average over all (t of P ( c  1 d. 0) .  To 
that end, write the average as (proportional to) I dtr[C,P(d 1 d . c ~ ) P ( c  I 
o. d. ( I  I!, where as usual the integral is restricted to the r"-dimensional 
simplex. Rewrite this integral as f dn[C,P(o J c i )P(c  1 ( 2 . d . o ) P ( d  J d.(i)/ 
Pid 1 ( t  I ]  = dr\[C,, n.,P(c 1 o. d ) P ( d  I 0)]/[1,~ rr,fP(d I o')] ,  where d is a 
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dummy 4 value. Rewrite this in turn as 

As in the proof of Theorem (2), break up $ into two components, 41 
and 42, where $1 fixes the values of Q; over the X values lying inside d x ,  
and $2 fixes it over the values outside of dx.  We must find how the terms 
in our sum depend on $1 and 4 2 .  

First, write P(c  I 4 . d )  = C h P ( h  I d ) P ( c  1 h ,4 .d ) .  By definition, for 
OTS error P(c  1 h ,$ ,d )  is independent of 41. This allows us to write 
P(c I 4 , d )  = P(c  I 4 2 . 4 .  

Next, since we are restricting attention to vertical likelihoods, P(d  1 d) 
depends only on $l. So we can write the term in the curly brackets 

obvious notation. Since we are assuming that for no $ does P(d I 4) 
equal zero exactly, the denominator sum is always nonzero. 

Now change variables in the integral over a by rearranging the 42 
indices of a. In other words, d1 and 4 2  are a pair of discrete-valued 
vectors, and N is a real-valued vector indexed by a value for Q;1 and one 
for qb2; transform (Y so that its dependence on 4 2  is rearranged in some 
arbitrary-though invertible-fashion. Performing this transformation is 
equivalent to mapping the space of all $2 vectors into itself in a one-to-one 
manner. The Jacobian of this transformation is 1, and the transformation 
does not change the functional form of the constraint forcing N to lie on a 
simplex (i.e., C9,42,, ag,b2,, = 1 and for all 4142~, abld2,, 2 0, where double- 
prime indicates the new 4 2  indices). So expressed in this new coordinate 
system, the integral is J dn{a~,,s2,/  Em; a,;P(d I &)}, where 4; is a new 
index corresponding to the old index 4 2 .  Since this integral must have 
the same value as our original integral, and since 4; is arbitrary, we see 
that that integral is independent of 42, and therefore can only depend on 
the values of d and $l. 

as s d n [ a ~ , ~ * / C " I " ; a s ~ ~ ~ P P ( d  I 411 = s d + d C $  ayP(d I 4)l with 

This means that we can rewrite our sum over all #I as 

c P(C I $ 2 ,  d)P(d I 41) func1{41, 4 
I"I& 

for some function "funcl(-)." In other words, the a-average of P(c  1 
d ,  a )  is proportional to P(c  I $2,  d ) ,  where the proportionality constant 
depends on d. Since P(c  1 4, d )  = P(c  I 42.d) (see above), our sum is 
proportional to &,m2P(c I 4,d) = &,P(c 1 4 . d ) .  By Theorem (4), this 
sum equals A(c)/r. 

So the uniform a-average of P(c  I d, a )  = funcZ(d) A(c)/r for some 
function "func2(.)." Since C,  P(c  I d ,  CY)  = 1, the sum over C values of the 
uniform n-average of P(c  1 d, a) must be independent of d (it must equal 
1). Therefore funcZ(d) is independent of d .  Since we know that h ( c ) / r  is 
properly normalized over c, we see that funcn(d) in fact equals 1. QED. 
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Appendix E. Proof of Theorem (10) - 

First use the fact that given q, d x  determines whether there is a punt 
signal, to write 

€[CoTs I 4. (no) punt. ml = E(COTS I d. 4 )  
‘1, 

x P [ d x  I (no) punt. o. 1111 (E.1) 

Next, without loss of generality, let the xs for which o(x) = 0 be 
1.. . . . k ,  so that p(x) = 1 for x = k + l . .  . . ~ n. Then P(dx I no punt. 0. in) = 0 
unless all the d x ( i )  5 k .  Since T ( X )  is uniform, and d is ordered and 
perhaps has repeats, the value of P(dx  I no punt. 41. r n )  when all the d x ( i )  5 
k is k-“’. Similarly, P ( d x  I punt.@.m) = 0 unless at least one of the 
d x ( i )  > k ,  and when it is nonzero it equals some constant set by k and nz. 

It’s also true that €( CoTs 1 Q. d x )  is not drastically different if one con- 
siders d x s  with a different m’. Accordingly, our summand does not vary 
drastically between dxs of one m‘ and dxs of another. Since 11 >> 772 and 
~ ( s )  is uniform though, almost all of the terms in the sum have rn’ = 1 1 1 .  

Pulling this all together, we see that to an arbitrarily good approximation 
(for large enough i i  relative to m), we can take m’ = m. So E.l  becomes 

E[CUTS I (/A (no) punt. m] = E(COTS 1 4. d ~ )  
dX 

x P[dx  I (no) punt. m. m’ = m] (E.2) 

Now consider conditioning on ”no punt,” in which case all the d x ( i )  5 
k. For such a situation, for m’ = 1 1 1 ,  €(COTS I &.&) = ( i f  - k ) / ( n  - rn). 
In contrast, consider having a punt signal, in which case at least one 
d x ( i )  > k. NOW E(&s 1 & d x )  5 ( 1 1  - k - l ) / ( r ?  - WI) < ( n  - k ) / ( n  - V I ) .  

Combining this with E.2, we get E ( C ~ T ~  I ~5.punt.m) < €(COTS I 
Q. no punt. m) .  QED. 
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