
ARTICLE Communicated by Steven Nowlan

The Lack of A Priori Distinctions Between Learning
Algorithms

David H. Wolpert
The Santa Fe Institute, 1399 Hyde Park Rd.,
Santa Fe, N M , 87501, U S A

This is the first of two papers that use off-training set (OTS) error
to investigate the assumption-free relationship between learning algo-
rithms. This first paper discusses the senses in which there are no
a priori distinctions between learning algorithms. (The second paper
discusses the senses in which fhere are such distinctions.) In this first
paper it is shown, loosely speaking, that for any two algorithms A
and B, there are "as many" targets (or priors over targets) for which A
has lower expected OTS error than B as vice versa, for loss functions
like zero-one loss. In particular, this is true if A is cross-validation
and B is "anti-cross-validation'' (choose the learning algorithm with
largest cross-validation error). This paper ends with a discussion of
the implications of these results for computational learning theory. It
is shown that one cannot say: if empirical misclassification rate is low,
the Vapnik-Chervonenkis dimension of your generalizer is small, and
the training set is large, then with high probability your OTS error is
small. Other implications for "membership queries" algorithms and
"punting" algorithms are also discussed.

"Even after the observation of the frequent conjunction of ob-
jects, we have no reason to draw any inference concerning
any object beyond those of which we have had experience."
David Hume, in A Treatise of Human Nature, Book I, part 3,
Section 12.

1 Introduction

Much of modern supervised learning theory gives the impression that
one can deduce something about the efficacy of a particular learning al-
gorithm (generalizer) without the need for any assumptions about the
target input-output relationship one is trying to learn with that algo-
rithm. At most, it would appear, to make such a deduction one has
to know something about the training set as well as about the learning
algorithm.

Consider for example the following quotes from some well-known
papers: "Theoretical studies link the generalization error of a learning

Neural Computation 8, 1341-1390 (1996) @ 1996 Massachusetts Institute of Technology

1342 David H. Wolpert

algorithm to the error on the training examples and the capacity of the
learning algorithm (independent of concerns about the target)”; ”We have
given bounds (independent of the target) on the training set size vs.
neural net size needed such that valid generalization can be expected”;
”If our network can be trained to classify correctly . . . 1 - (1 -)c of
the k training examples, then the probability its [generalization] error
is less than : is at least [a function, independent of the target, of t,
7 , k , and the learning algorithm]”; ”There are algorithms that with high
probability produce good approximators regardless of the target function
. . . . We do not need to make any assumption about prior probabilities
(of targets)”; ”To do Bayesian analysis, it is not necessary to work out
the prior (over targets)”; “This shows that (the probability distribution of
generalization accuracy) gets concentrated a t higher and higher accuracy
\,slues as more examples are learned (independent of the target).” Similar
statements can be found in the ”proofs” that various supervised learning
communities have offered for Occam’s razor (Blumer rf n l . 1987; Berger
and Jeffreys 1992; see also Wolpert 1994a, 1995). There even exists a field
(”agnostic learning,” Kearns ct nl. 1992) whose expressed purpose is to
create learning algorithms that are assuredly effective even in the absence
of assumptions about the target.

Frequently the authors of these kinds of quotes understand that there
are subtleties and caveats behind them. But the quotes taken at face value
raise an intriguing question: can one actually get something for nothing
in supervised learning? Can one get useful, caveat-free theoretical results
that link the training set and the learning algorithm to generalization er-
ror, without making assumptions conctrning the target? More generally,
are there useful practical techniques that require no such assumptions?
A s a potential example of such a technique, note that people usually use
cross-validation without making any assumptions about the underlying
target, as though the technique were universally applicable.

This is the first of two papers that present an initial investigation of
this issuc. These papers can be viewed as an analysis of the mathematical
”skeleton” of supervised learning, before the ”flesh” of particular priors
over targets and similar problem-specific distributions is introduced. It
should be emphasizcd that the work in these papers is very preliminary;
e\’en the “skeleton” of supervised learning is extremely rich and detailed.
Much remains to be done.

The primary mathematical tool used in these papers is off-training
set (OTS) generalization error, i.e., generalization error for test sets that
contain no overlap with the training set. (In the conventional measure of
gencralization error such overlap is allowed.) Section 2 of this first paper
rxplains why such a measure of error is of interest, and in particular
emphasizes that it is equivalent to (more conventional) IID error in many
scenarios of interest. Those who already accept that OTS error is of
interest can skip this section.

Section 3 presents the mathematical formalism used in this paper.

Lack of Distinctions between Learning Algorithms 1343

Section 4 presents the “no free lunch” (NFL) theorems (phrase due
to D. Haussler). Some of those theorems show, loosely speaking, that
for any two algorithms A and B, there are ”as many” targets for which
algorithm A has lower expected OTS error than algorithm B as vice versa
(whether one averages over training sets or not). In particular, such
equivalence holds even if one of the algorithms is random guessing;
there are “as many” targets for which any particular learning algorithm
gets confused by the data and performs worse than random as for which
it performs better. As another example of the NFL theorems, it is shown
explicitly that A is equivalent to B when B is an algorithm that chooses
between two hypotheses based on which disagrees more with the training
set, and A is an algorithm that chooses based on which agrees more with
the training set. Other NFL theorems are also derived, showing, for
example, that there are as many priors over targets in which A beats B
(i.e., has lower expected error than B) as vice versa. In all this, the quotes
presented at the beginning of this section are misleading at best.

Next a set of simple examples is presented illustrating the theorems
in scenarios in which their applicability is somewhat counterintuitive.
In particular, a brief discussion is presented of the fact that there are as
many targets for which it is preferable to choose between two learning
algorithms based on which has larger cross-validation error (“anti-cross-
validation”) as based on which has smaller cross-validation error.

This section also contains the subsection ”Extensions for nonuniform
averaging” that extends the NFL results beyond uniform averages; as that
subsection shows, one can, for example, consider only priors over targets
that are highly structured, and it is still often true that all algorithms are
equal. Also in this section is the subsection ”On uniform averaging,”
which provides the intellectual context for the analyses that result in the
NFL theorems.

Section 5 discusses the NFL theorem’s implications for and relation-
ship with computational learning theory. It starts with a discussion of
empirical error and OTS error. This discussion makes clear that one must
be very careful in trying to interpret uniform convergence (VC) results.
In particular, it makes clear that one cannot say: if the observed empir-
ical misclassification rate is low, the VC dimension of your generalizer
is small, and the training set is large, then with high probability your
OTS error is small. After this, the implications of the NFL results for ac-
tive learning, and for ”membership queries” algorithms and ”punting”
algorithms (those that may refuse to make a guess), are discussed.

Small and simple proofs of claims made in the text of this first paper
are collected in Appendix C.

Paper one concentrates on relative sizes of sets of targets and the asso-
ciated senses in which all algorithms are a priori equivalent. In contrast,
paper two concentrates on other ways to compare algorithms. Some of
these alternative comparisons reveal no distinctions between algorithms,
just like the comparisons in paper one. However some of the other al-

1344 David H. Wolpert

ternative comparisons result in a priori distinctions between algorithms.
In particular, it is pointed out in paper two that the equivalence of av-
erage OTS error between cross-validation and anti-cross-validation does
not mean they have equivalent "head-to-head minimax" properties, and
that algorithms can differ in those properties. Indeed, it may be that
cross-validation has better head-to-head minimax properties than anti-
cross-validation, and therefore can be a priori justified in that sense.

Of course, the analysis of paper one does not rule out the possibility
that there are targets for which a particular learning algorithm works well
compared to some other one. To address the nontrivial aspects of this
issue, paper two discusses the case where one averages over hypotheses
rather than targets. The results of such analyses hold for all possible
priors, since they hold for all (fixed) targets. This allows them to be used
to prove, as a particular example, that cross-validation cannot be justified
as a Bayesian procedure, i.e., there is no prior over targets for which,
without regardfor the leanizfig a lpr i thn i s i ir qitestion, one can conclude that
one should choose between those algorithms based on minimal rather
than (for example) maximal cross-validation error. In addition, it is noted
that for a very natural restriction of the class of learning algorithms,
one can distinguish between using minimal rather than maximal cross-
validation error-and the result is that one should use maximal error(!).

All of the analysis up to this point assumes the loss function is in the
same class as the zero-one loss function (which is assumed in almost all
of computational learning theory). Paper two goes on to discuss other
loss functions. In particular, the quadratic loss function modifies the
preceding results considerably; for that loss function, there urc algorithms
that are a priori superior to other algorithms. However, it is shown in
paper two that no algorithm is superior to its "randomized" version, in
which the set of potential fits to training sets is held fixed, but which fit
is associated with which training set changes. In this sense one cannot a
priori justify any particular learning algorithm, even for a quadratic loss
function.

Finally, paper two ends with a brief overview of some open issues
and discusses future work.

It cannot be emphasized enough that no claim is being made in this
first paper that all algorithms are equivalent i i i prmfticr, in the real world.
In particular, no claim is being made that one should not use cross-
validation in the real world. (I have done so myself many times in the
past and intend to do so again in the future.) The sole concern of this
paper is what can(not) be formally inferred about the utility of various
learning algorithms if one makes no assumptions concerning targets.

The work in these papers builds upon the analysis in Wolpert (1992,
1993). Some aspects of that early analysis are nicely synopsized in Schaf-
fer (7993, 1994). Schaffer (1994) also contains an inttwsting discussion
of the implications of the NFL theorems for real wcrld learning, as does

Lack of Distinctions between Learning Algorithms 1345

Murphy and Pazzani (1994). See also Wolpert and Macready (1995) for
related work in the field of combinatorial optimization.

The major extensions beyond this previous work that is contained in
these two papers are (1) many more issues are analyzed (e.g., essentially
all of paper two was not touched upon in the earlier work); and (2) many
fewer restrictions are made (e.g., losses other than zero-one are consid-
ered, arbitrary kinds of noise are allowed, both hypotheses and targets
are arbitrary probability distributions rather than single-valued functions
from inputs to outputs, etc.).

2 Off-Training-Set Error

Many introductory supervised learning texts take the view that “the over-
all objective . . . is to learn from samples and to generalize to new, as yet
unseen cases” (italics mine-see Weiss and Kulikowski 1991, for example).
Similarly, in supervised learning it is common practice to try to avoid
fitting the training set exactly, to try to avoid “overtraining.” One of the
major rationales given for this is that if one overtrains, ”the resulting (sys-
tem) is unlikely to classify additional points (in the input space) correctly”
(italics mine-see Dietterich 1990). As another example, in Blumer et al.
(1987), we read that ”the real value of a scientific explanation lies not in
its ability to explain (what one has already seen), but in predicting events
that have yet to (be seen).” As a final example, in Mitchell and Blum
(1994) we read that “(in Machine Learning we wish to know whether)
any hypothesis found to approximate the target function well over a suf-
ficiently large set of training examples will also approximate the target
function well over other unobserved examples.”

This language makes clear that OTS behavior is a central concern of
supervised learning, even though little theoretical work has been devoted
to it to date. Some of the reasons for such concern are as follows.

1. In the low-noise (for outputs) regime, optimal behavior on the train-
ing set is trivially determined by lookup table memorization. Of
course, this has nothing to do with behavior off of the training set;
so in this regime, it is only such OTS behavior that is of interest.

2. In particular, in that low-noise regime, if one uses a memorizing
learning algorithm, then for test sets overlapping with training sets
the upper limit of possible test set error values shrinks as the train-
ing set grows. If one does not correct for this when comparing
behavior for different sizes of the training set (as when investigat-
ing learning curves), one is comparing apples and oranges. In that
low-noise regime, correcting for this effect by renormalizing the
range of possible error values is equivalent to requiring that test
sets and training sets be distinct, i.e., is equivalent to using OTS
error (see Wolpert 1994a).

1346 David H. Wolpert

3. In artificial intelligence-ne of the primary fields concerned with
supervised learning-the emphasis is often exclusively on general-
izing to as yet unseen examples.

4. In the real world, very often the process generating the training set
is not the same as that governing testing. In such scenarios, the
usual justification for testing with the same process that generated
the training set (and with it the possibility that test sets overlap
with training sets) does not apply.

One example of such a difference between testing and training is
“active” or ”query-based” or ”membership-based” learning. In that kind
of learning the learner chooses, perhaps dynamically, where in the input
space the training set elements are to be. However, conventionally, there
is no such control over the test set. So testing and training are governed
bv different processes.

As another example, say we wish to learn tertiary protein structure
from primary structure and then use that to aid drug design. We already
k i i w what tertiary structure corresponds to the primary structures in the
training set. So we will never have those structures in the ”test set” (i.e.,
in the set of nucleotide sequences whose tertiary structure we wish to
infer t o aid the drug design process). We will only be interested in OTS
error.

5. Distinguishing the regime where test examples coincide with the
training set from the one where there is no overlap amounts to split-
ting supervised learning along its natural ”cleavage plane.” Since
behavior can be radically different in the two regimes, it is hard to
see why one wouldn‘t want to distinguish them.

6. When the training set is much smaller than the full input space, the
probability that a randomly chosen test set input value coincides
with the training set is vanishingly small. So in such situations one
expects the \ d u e of the OTS error to be well-approximated by the
value of the conventional IID (independent identically distributed)
error, an error that allows overlap between test sets and training
sets.

One might suppose that in such a small training set regime there
is no aspect of OTS error not addressable by instead calculating
IID error. This is wrong though, as the following several points
illustrate.

7. First, even if OTS error is well approximated by IID error, it does not
follow that quantities like the ”derivatives” of the errors are close
to one another. In particular, it does not follow that the sign of the
slope of the learning curve-often an object of major interest-is
the same for both errors over some region of interest.

As an example, in Wolpert P t al . (1995), it is shown that the expected
OTS misclassification rate can iizcrrase with training set size, even if one

Lack of Distinctions between Learning Algorithms 1347

averages both over training sets and targets, and even if one uses the
Bayes-optimal learning algorithm. In contrast, it is also shown there
that under those same conditions, the expected IID misclassification rate
is strictly nonincreasing as a function of training set size for the Bayes-
optimal learning algorithm (see also the discussion in Wolpert 1994a con-
cerning the statistical physics supervised learning formalism).

8. Second, although it is usually true that a probability distribution
over IID error will well-approximate the corresponding distribu-
tion over OTS error, distributions conditioned on IID error can differ
drastically from distributions conditioned on OTS error. This can
be very important in understanding the results of computational
learning theory.

As an example of such a difference, let s be the empirical misclassifi-
cation rate between a hypothesis and the target over the training set (i.e.,
the average number of disagreements over the training set), m the size of
the training set, cflD the misclassification rate over all of the input space
(the IID zero-one loss generalization error), and cbTs the misclassification
rate over that part of the input space lying outside of the training set.
(These terms are formally defined in the next section and at the begin-
ning of Section 5.) Assume a uniform sampling distribution over the
input space, a uniform prior over target input-output relationships, and
a noise-free IID likelihood governing the training set generation. Then
P(s I cfrD. m) , the probability of getting empirical misclassification rate s
given global misclassification rate ciID, averaged over all training sets of
size m, is just the binomial distribution (c;,D)S’lf (1 - c&,)(I1f-sf”)C’l’ S’lff where

of a coin with bias cil0 toward heads).
On the other hand, P(s I cbTS3 m), the probability of getting empirical

misclassification rate s given off-training sets misclassification rate c&,
averaged over all training sets of size m, is independent of c b s . (This
is proven in Section 5 below.) So the dependence of the empirical mis-
classification rate on the global misclassification rate depends crucially
on whether it is OTS or IID “global misclassification rate.”

9. Third, often it is more straightforward to calculate a certain quantity
for OTS rather than IID error. In such cases, even if one’s ultimate
interest is IID error, it makes sense to instead calculate OTS error
(assuming one is in a regime where OTS error well-approximates
IID error).

As an example, OTS error results presented in Section 5 mean that
when the training set is much smaller than the full input space, P(c;,, I
s ,m) is (arbitrarily close to) independent of s, if the prior over target
input-output relationships is uniform. This holds despite VC results
saying that independent of the prior, it is highly unlikely for ciID and
s to differ significantly. (This may seem paradoxical at first. See the
discussion in Section 5 for the ”resolution.”)

C“ - = a!/[b!(a - b) !] (s can be viewed as the percentage of heads in m flips

1348 David H. Wolpert

The formal identity (in the appropriate limit) between a probability
distribution over an OTS error and one over an IID error is established
at the end of Appendix B.

None of the foregoing means that the conventional IID error measure
is "wrong." No claim is being made that one "should not" test with the
same process that generated the training set. Rather the claim is simply
that OTS testing is an issue of major importance. In that it gives no credit
for memorization, it is also the natural way to investigate whether one
can make assumption-free statements concerning an algorithm's gener-
alization (!) ability.

3 The Extended Bayesian Formalism -

'These papers use the extended Bayesian formalism (EBF-Wolpert 1992,
19941; Wolpert et 01. 1995). In the current context, the EBF is just conven-
tional probability theory, applied to the case where one has a different
random variable for the hypothesis output by the learning algorithm and
for the target relationship. It is this crucial distinction that separates the
EBF from conventional Bayesian analysis, and that allows the EBF (unlike
conventional Bayesian analysis) to subsume all other major mathemati-
cal treatments of supervised learning like computational learning theory,
sampling theory statistics, etc. (see Wolpert 1994a).

This section presents a synopsis of the EBF. Points (2), (S), (14), and
(15) below can be skipped in a first reading. A quick reference of this
section's synopsis can be found in Table 1.

Readers unsure of any aspects of this synopsis, and in particular un-
sure of any of the formal basis of the EBF or justifications for any of its
(sometimes implicit) assumptions, are directed to the detailed exposition
of the EBF in Appendix A.

3.1 Overview.

1. The input and output spaces are X and Y, respectively. They contain
I I and Y elements, respectively. A generic element of X is indicated
by s, and a generic element of Y is indicated by y.

2. Random variables are indicated using capital letters. Associated
instantiations of a random variable are indicated using lower case
letters. Note though that some quantities (e.g., the space X) are
neither random variables nor instantiations of random variables,
and therefore their written case carries no significance.

Only rarely will it be necessary to refer to a random variable
rather than an instantiation of it. In accord with standard statistics
notation, "E(A 1 b)" will be used to mean the expectation value of
A given B = b, i.e., to mean d a a P (a 1 b) . (Sums replace integrals
if appropriate.)

Lack of Distinctions between Learning Algorithms 1349

Table 1: Summary of the Terms in the EBF

-

The sets X and Y, of sizes n and r

The set d, of m X-Y pairs
The X-conditioned distribution over

The X-conditioned distribution over
Y.h
The real number c

Y.f

The X-value q
The Y-value YF

The Y-value YH

The input and output space,
respectively.

The training set.
The target, used to generate test sets.

The hypothesis, used to guess for test
sets.
The cost.

The test set point.
The sample of the target f at point q.
The sample of the hypothesis k at
point q.

The learning algorithm.
The posterior.
The likelihood.
The prior.

If c = L(YF,YH), L (. . .) is the ”loss function”

L is ”homogeneous” if XI,, D[c. L(YH. y ~)] is independent of YH

If we restrict attention to fs given by a fixed noise process superimposed on
an underlying single-valued funtion from X to Y, 4, and if &P(yr I 9.4) is
independent of YF, we have “homogeneous“ noise

3. The primary random variables are the hypothesis X-Y relationship
output by the learning algorithm (indicated by H), the target (i.e.,
”true”) X-Y relationship (F), the training set (D) , and the real world

These variables are related to one another through other random vari-
ables representing the (test set) input space value (Q), and the associated
target and hypothesis Y-values, YF and YH, respectively (with instantia-
tions y~ and YH, respectively).

cost (C).

This completes the list of random variables.
As an example of the relationship between these random variables

and supervised learning, f, a particular instantiation of a target, could
refer to a ”teacher” neural net together with superimposed noise. This
noise-corrupted neural net generates the training set d . The hypothesis
h on the other hand could be the neural net made by one’s “student“
algorithm after training on d . Then q would be an input element of the
test set, YF and yH associated samples of the outputs of the two neural

1350 David H. Wolpert

nets for that element (the sampling of y~ including the effects of the
superimposed noise), and c the resultant ”cost” [e.g., c could be (Y F - ? / H) ’] .

3.2 Training Sets and Targets.
4. m is the number of elements in the (ordered) training set d. {dx(i).

d y (i) } is the set of rn input and output values in d. m’ is the number
of distinct values in dx.

5. Targetsf are always assumed to be of the form of X-conditioned
distributions over Y, indicated by the real-valued function f(x E
x.y E Y) [i.e., P(yp 1 f . q) = f(q.YF)]. Equivalently, where s, is
defined as the v-dimensional unit simplex, targets can be viewed as
mappings f : X i S, .

Any restrictions on f are imposed by P(f.h,d.c), and in particu-
lar by its marginalization, P(f). Note that any output noise process
is automatically reflected in P(yf I f .9) . Note also that the definition
P (y F 1 f. q) = f (q . y F) only directly refers to the generation of test set ele-
ments; in general, training set elements can be generated from targets in
a different manner.

6. The ”likelihood” is P(d I f) . It says how d was generated fromf. It
is “vertical” if P(d I f) is independent of the valuesf(x. ~ J F) for those
x 4 dx. As an example, the conventional IID likelihood is

I l l

[where T (X) is the ”sampling distribution”]. In other words, under
this likelihood d is created by repeatedly and independently choos-
ing an input value dx(i) by sampling T(.), and then choosing an
associated output value by sampling f[dx(i). .], the same distribu-
tion used to generate test set outputs. This likelihood is vertical.

As another example, if there is noise in generating training set X
values but none for test set X values, then we usually do not have a
vertical P (d I f). (This is because, formally speaking, f directly governs
the generation of test sets, not training sets; see Appendix A.)

7. The ”posterior” usually means P(f I d), and the “prior” usually
means P(f).

8. It will be convenient at times to restrict attention to fs that are
constructed by adding noise to a single-valued function from X to Y,
4. For a fixed noise process, such f s are indexed by the underlying
4.

The noise process is ”homogeneous” if the sum over all 4 of P(YF 1
q. 4) is independent of yF. An example of a homogeneous noise process
is classification noise that with probability p replaces 4(q) with some
other value in Y, where that ”other value in Y” is chosen uniformly and
randomly.

Lack of Distinctions between Learning Algorithms 1351

3.3 The Learning Algorithm.

9. Hypotheses h are always assumed to be of the form of X-conditioned
distributions over Y, indicated by the real-valued function h(x E
X,y E Y) [i.e., P(YH 1 h.q) = h(q.yH)]. Equivalently, where S , is de-
fined as the r-dimensional unit simplex, hypotheses can be viewed
as mappings h : X ---f S,.

Any restrictions on h are imposed by P(f. k. d. c). Here and through-
out, a ”single-valued” distribution is one that, for a given x, is a delta
function about some y. Such a distribution is a single-valued function
from X to Y. As an example, if one is using a neural net as one‘s regres-
sion through the training set, usually the (neural net) h is single-valued.
On the other hand, when one is performing probabilistic classification
(as in softmax), h is not single-valued.

10. Any (!) learning algorithm (aka ”generalizer”) is given by P(k I d),
although writing down a learning algorithm’s P(h 1 d) explicitly is
often quite difficult. A learning algorithm is ”deterministic” if the
same d always gives the same h. Backprop with a random initial
weight is not deterministic. Nearest neighbor is.

Note that since d is ordered, ”on-line” learning algorithms are sub-

11. The learning algorithm only sees the training set d, and in particular
does not directly see the target. So P(k I f . d) = P(h I d), which
means that P(h.f I d) = P (h I d) x P(f I d), and therefore P(f I h. d) =

sumed as a special case.

W.f I d) / P (h I 4 = P(f I 4.

3.4 The Cost and ”Generalization Error”.

12. For the purposes of this paper, the cost c is associated with a par-
ticular YH and YF, and is given by a loss function L(yH.yF). As an
example, in regression, often we have “quadratic loss”: L(yH. y F) =

L (. , .) is ”homogeneous” if the sum over yf of b[c ,L(y~.yF)] is some
function A(c), independent of YH (6 here being the Kronecker delta func-
tion). As an example, the ”zero-one” loss traditional in computational
learning theory [L(u, b) = 1 if u # b, 0 otherwise] is homogeneous.

13. In the case of ”IID error” (the conventional error measure), P (q I
d) = ~ (q) (so test set inputs are chosen according to the same dis-
tribution that determines training set inputs). In the case of OTS
error, P(q I 4 = [S (q q! dx)~(q) l / [C,b(q $ dx)~(q)l, where 6(z) = 1 if
z is true, 0 otherwise.

(YH - YF)’.

Subscripts OTS or IID on c correspond to using those respective kinds
of error.

1352 David H. Wolpert

14. The "generalization error function" used in much of supervised
learning is given by c' = E (C 1 f. 1 1 . d) . (Subscripts OTS or IID on c'
correspond to using those respective ways to generate 9.) It is the
average over all 67 of the cost c, for a given target f, hypothesis h ,
and training set d .

In general, probability distributions oi'er c' do not by themselves de-
termine those over c or vice versa, i.e., there is not an injection between
such distributions. However, the results in this paper in general hold for
both L- and c', although they will be presented only for c. In addition, es-
pecially when relating results in this paper to theorems in the literature,
sometimes results for c' will implicitly be meant even when the text still
refers to c. (The context will make this clear.)

15. When the size of X, i z , is much greater than the size of the train-
ing set, m, probability distributions over & and distributions over

become identical. (Although, as mentioned in the previous
section, distributions conditioned on cllU can be drastically differ-
ent from those conditioned on &.) This is established formally in
Appendix B.

4 The No-Free-Lunch Theorems ~

I n Wolpert (1992) it is shown that P (c l d) = d f d h P(hlcl)P(fld)M,.,,(f.I~),
where so long as the loss function is symmetric in its arguments, M, ,[(.. .)
is symmetric in its arguments. (See point (11) of the previous section.)
In other words, for the most common kinds of loss functions (zero-one,
quadratic, etc.), the probability of a particular cost is determined by an
inner product between your learning algorithm and the posterior prob-
ability. v and / I being the component labels of the d-indexed infinite-
dimensional vectors P(f I d) and P (h I d) , respectively.] Metaphorically
speaking, how "aligned" you (the learning algorithm) are with the uni-
verse (the posterior) determines how well you will generalize.

The question arises though of how much can be said concerning a
particular learning algorithm's generalization behavior without specify-
ing the posterior (which usually means without specifying the prior).
More precisely, the goal is to address the issue of how F1, the set of tar-
gets f for which algorithm A outperforms algorithm B, compares to F I ,

the set of targetsf for which the reverse is true. To analyze this issue,
the simple trick is used of comparing the average over f of f-conditioned
probability distributions for algorithm A to the same average for algo-
rithm B. The relationship between those averages is then used to compare

Evaluating suchf-averages results in a set of NFL theorems. In this
section, first I derive the NFL theorems for the case where the target f
need not be single-valued. In this case, the theorems say that uniformly
averaged over allf, all learning algorithms are identical. The implications

FI to Fl.

Lack of Distinctions between Learning Algorithms 1353

of this for how F1 compares to F2 are discussed after the derivation of
the theorems.

When the target f is not single-valued, it is a (countable) set of real
numbers (one for each possible x-y pair). Accordingly, any P(f) is a
probability density function in a multidimensional space. That makes
integrating over all P(f)s a subtle mathematical exercise. However in
the function+noise scenario, for a fixed noise process, ‘If” is indexed by
a single-valued function 4. Since there are a countable number of bs,
any P (4) is a countable set of real numbers, and it is straightforward to
integrate over all P(4) . Doing so gives some more NFL theorems, where
one uniformly averages over all priors rather than just over all targets.
These additional theorems are presented after those involving averages
over all targets f .

After deriving these theorems, I present some examples of them, de-
signed to highlight their counterintuitive aspects. I also present a general
discussion of the significance of the theorems, and in particular of the
uniform averaging that goes into deriving them.

Here and throughout this paper, when discussing non-single-valued
fs, ”A (f) uniformly averaged over all targets f ” means J df A (f) / 1 df 1.
Note that these integrals are implicitly restricted to thosef that constitute
X-conditioned distributions over Y, i.e., to the appropriate product space
of unit-simplices. (The details will not matter, because integrals will
almost never need to be evaluated. But formally, integrals over targetsf
are over a full r”-dimensional Euclidean space, with a product of Dirac
delta functions and Heaviside functions inside the integrand enforcing
the restriction to the Cartesian product of simplices.)

Similar meanings for “uniformly averaged” are assumed if we are
talking about averaging over other quantities, like P (4) .

4.1 Averaging over All Target Distributionsf. We start with the fol-
lowing simple lemma, that recurs frequently in the subsequent analysis.
Its proof is in Appendix C .

Consider now the ”(uniform) random learning algorithm”: for any
test set element not in the training set, guess the output randomly (in-
dependently of the training set d), according to a uniform distribution.
(With certain extra stipulations concerning behavior for test set questions
9 E dx, this is a version of the Gibbs learning algorithm.) An immediate
corollary of Lemma (l), proven in Appendix C , is that for this algorithm,
for a symmetric homogeneous loss function, P(c I d) = A(c)/r for all
training sets d. Similarly, for all priors over targets f , indicated by a,
both P(c 1 m , a) and P(c I d,n) equal A(C)/Y, for this random learning
algorithm.

1354 David H. Wolpert

This simple kind of reasoning suffices to get "NFL" results for the
random algorithm, even without invoking a vertical likelihood. How-
ever, more is needed for scenarios concerning other algorithms, scenar-
ios in which there is "randomness," but it concerns targets rather than
hypotheses. This is because we are interested in probability distributions
conditioned on target-based quantities (f , (t , etc.), so results for when
there is randomness in hypothesis-based quantities do not immediately
carry over to results for randomness in target-based quantities.

To analyze these alternative scenarios, we start with the following
simple implication of Lemma (1) (see Appendix C):

The uniform average over all targets f of P(c 1 f . d) equals

(I...r) 1 $[c.L(!lH.yr)j P I y H 1 9 . 4 P (q Id)
V l , Ill .q

Recalling the definition of homogenous loss L, we have now proven
the following:

Theorem 1. For 1mtzogeizeotis loss L , flu. i i izi forii i ozleruge oiler u l l f c$P(c 1 f . d)
cqfrnls . \ (c) ; r .

Note that thisf-average is independent of the learning algorithm. So
Theorem (1) constitutes an NFL theorem for distributions conditioned on
targets f and training sets r f ; it says that uniformly averaged over all f ,
such distributions are independent of the learning algorithm. Note that
this result holds independent of the sampling distribution, the training
set, or the likelihood.

As an example of Theorem (l), for the .lie) of zero-one loss, we get
the f-average of E (C I f . d) = r - 1 1 ' ~ . More generally, for an even broader
set of loss functions L than homogeneous Ls, the sum over target outputs

of L(y,,.!/r) is independent of the hypothesis output, ykf. For such Ls
we get generalizer-independence for the uniform average over targets f
o f E (C 1 f . d) , even if we do not have such independence for the uniform
average o f P (c 1 f . 11).

Note that Theorem (1) does not rely on having q lie outside of dx; it
holds even for IID error. In addition, since bothf and d are fixed in the
conditional probability in Theorem (1), any statistical coupling between
f and i f is ignored in that theorem. For these kinds of reasons, Theorem
(I) is not too interesting by itself. The main use of it is to derive other
results, results that rely on using OTS error and that are affected by the
coupling of targetsf and training sets d . As the first of these, I will show
how to use Theorem (1) to evaluate the uniform f-average of P (c 1 f . m)
for OTS error.

In evaluating the uniformf-average of P (c 1 f . m) , not allfs contribute
the same amount to the answer. That is because

P(c- 1 f . m) = Epic / f . t l) P (d I f)
,1

Lack of Distinctions between Learning Algorithms 1355

and so long as the likelihood P(d I f) is not uniform over f , we cannot
just pull the outsidef-average through to use Theorem (1) to reduce the
P(c I f , d) to A(c) / r . This might lead one to suspect that if the learning
algorithm is "biased" toward the targets f contributing the most to the
uniform f-average of P(c 1 f , m), then the average would be weighted
toward (or away from) low values of cost, c. However this is wrong; it
turns out that the uniform f-average of P(c I f , m) is independent of the
learning algorithm, if one restricts oneself to OTS error.

In fact, assume that we have any P(q I d) such that P(q E dx I d) = 0
[in particular, P(q 1 d) need not be the OTS P(q I d) discussed above]. For
such a scenario, for a vertical likelihood [i.e., a P(d I f) that is independent
of the values of f (x $ d x 3 .) I , we get the following result (see Appendix

Theorem 2. For OTS error, a vertical P(d I f) , and a homogeneous loss L, the
uniform average over all targets f o f P (c I f ~ m) = A(c) / r .

Again, this holds for any learning algorithm, and any sampling dis-
tribution. Note that this result means in particular that the "weight" of
fs on which one's algorithm performs worse than the random algorithm
equals the weight for which it performs better. In other words, one can
just as readily have a target for which one's algorithm has worse than ran-
dom guessing as one in which it performs better than random. The pitfall
we wish to avoid in supervised learning is not simply that our algorithm
performs as poorly as random guessing, but rather that our algorithm
performs worse than randomly!

Using similar reasoning to that used to prove Theorem (2), we can
derive the following theorem concerning the distribution of interest in
conventional Bayesian analysis, P(c 1 d):

Theorem 3. For OTS error, a vertical P(d 1 f) , uniform P (f) , and a homogeneous
loss L, P (c I d) = h (c) / r .

The reader should be wary of equating the underlying logic behind
a target-averaging NFL theorem [e g , Theorem (2)] with that behind a
uniform-prior NFL theorem [e.g., Theorem (3)] . In particular, there are
scenarios [i.e., conditioning events in the conditional distribution "P(c I
. . .)"I in which one of these kinds of NFL theorem holds but not the other.
See the discussion surrounding Theorem (9) below for an example.

As an immediate corollary of Theorem (3), we have the following.

Corollary 1. For OTS error, a vertical P(d I f) , uniform P(f), and a homoge-
neous loss L, P (c I m) = A(c) / r .

As an aside, so long as L(a . b) = L(b, a) for all pairs a and b, the
mathematics of the EBF is symmetric under interchange of h andf. [In
particular, for any loss L, it is both true that P(f I h.d) = P (f I d), and

1356 David H. Wolpert

that P(h I f . d) = P(k 1 d).] Accordingly, all of the NFL theorems have
analogues where the hypothesis h rather than the target f is fixed and
then uniformly averaged over. So for example, for OTS error, homo-
geneous L (. . .), and a generalizer such that P (d 1 h) is independent of
h(x $ d x) , the uniform average over k of P (c I k . m) = A (c) / r . [For such
a non-deterministic generalizer, assuming h l (x) = h (x) for all x E d x , the
probability that the training set used to produce the hypothesis was d
is the same, whether that produced hypothesis is h l or h2.1 Such results
say that averaged over all hs the algorithm might produce, all posteriors
over targets (and therefore all priors) lead to the same probability of cost,
under the specified conditions.

4.2 Averaging over All Functions 4. Now consider the scenario where
only those targets f are allowed that can be viewed as single-valued func-
tions o from X to Y with noise superimposed (see Section 3). To analyze
such a scenario, I will no longer consider uniform averages involving
f directly, but rather uniform averages involving o. Accordingly, such
averages are now sums rather than integrals. (For reasons of space, only
here in this subsection will I explicitly consider the case of f s that are
single-valued os with noise superimposed.)

In this new scenario, Lemma (1) still holds, withf replaced by c>.
However now we cannot simply set the uniform o-average of P(yr 1 q. d)
to l / r , in analogy to the reasoning implicitly used above [see the proof
of the “implication of Lemma (1)” in Appendix C]. To give an extreme
example, if the test set noise process is highly skewed and sends all O(9)
to some fixed value yl, then the o-average is 1 for yr = y1, 0 otherwise.
Intuitively, if the noise process always results in the test value y1, then we
can make a priori distinctions between learning algorithms; an algorithm
that always guesses y l outside of d, will beat one that does not.

So for simplicity restrict attention to those noise processes for which
the uniform 0-average of P(yF I q. o) is independent of the target output
value yr . Recall that such a (test set) noise process is called ”homoge-
neous.” So following along with our previous argument (recounted in
Appendix C), if we sum our o-average of P(yi 1 q . C I) over all y ~ , then by
pulling the sum over yi- inside the average over O, we see that the sum
must equal 1. [Again, see the proof of the “implication of Lemma (l).”]
Accordingly, the 0-average equals l / r . So we have the following analog
of Theorem (1):

Theorem 4. For homogeneous loss L and a lionlogeneom test-set noise process,
the uniform average over all single-smlued targetfiinctions o of P(c 1 (9. d) equals
.I (c) / Y .

Note that the noise process involved in generating the training set
is irrelevant to this result. (Recall that ”homogeneous noise” refers to
yr and yFf, and that y F and YH are Y values for the test process, not the

Lack of Distinctions between Learning Algorithms 1357

training process.) This is also true for the results presented below. So
in particular, all these results hold for any noise in the generation of the
training set, so long as our error measure is concerned with whether or
not h equals the (homogeneous noise corrupted) sample of the underlying
Q, at the test point q. (Note, in particular, that such a measure is always
appropriate for noise-free-and therefore trivially homogeneous-tes t set
generation).

We can proceed from Theorem (4) to get a result for P(c 1 f ~ m) in the
exact same manner as Theorem (1) gave Theorem (2) .

Theorem 5. For OTS error, a vertical P(d I 4) , homogeneous loss L, and a
homogeneous test-set noise process, the uniform average over all single-valued
targetfunctions 4 ofP(c I 4, m) equals A(c) / r .

Just as the logic behind Theorem (2) also resulted in Theorem (3), so
we can use the logic behind Theorem (5) to derive the following.

Theorem 6. For OTS error, a vertical P(d I d), homogeneous loss L, uniform
P(@), and a homogeneous test-set noise process, P (c 1 d) equals A(c) / r .

Just as Theorem (3) resulted in Corollary (l), so Theorem (6) estab-
lishes the following.

Corollary 2. For OTS error, vertical P(d I d), homogeneous loss L, a homoge-
neous test-set H o k e process, and uniform P(4) , P(c I m) equals A(c)/r.

We are now in a position to extend the NFL theorems to the case
where neither the prior nor the target is specified in the conditioning
event of our distribution of interest, and the prior need not be uniform.
For such a case, the NFL results concern uniformly averaging over priors
P(4) rather than over target functions 4.

Since there are rr1 possible single-valued 4, P (4) is an r"-dimensional
real-valued vector lying on the unit simplex. Indicate that vector as N,
and one of its components [i.e., P (4) for one 41 as ~ 4 . [More formally, (2

is a hyperparameter: P($ 1 a) = a$.] So the uniform average over all a
of P(c 1 m. n) is (proportional to) J d n P(c 1 m, a) = ,f d o [& P (4 1 a) P(c I
m. N, 4)], where the integral is restricted to the r"-dimensional simplex.
[a is restricted to lie on that simplex, since C4P(4 I 0) = x4 a+ = 1.1
It is now straightforward to use Theorem (5) to establish the following
result (see Appendix C):

Theorem 7. Assume OTS error, a vertical P(d 1 $), homogeneous loss L, and a
homogeneous test-set noise process. Let (1 index the priors P (4) . Then the uniform
average over all (1 of P(c I m. a) equals A(c) / r .

It is somewhat more involved to calculate the uniform average over all
priors (indexed by) (Y of P(c I d , a) . The result is derived in Appendix D:

1358 David H. Wolpert

Theorem 8. Assume OTS error, a vertical P(d I $), homogeneous loss L, and a
honiogeneoiis test set noise process. Let (1 index the priors P (4) . Then the iinifornz
auerage ouer all a of P(c I d. a) equals A(c)/r.

By Corollary (2), Theorem (7) means that the average over all priors
(r of P(c I m, a) equals P(c I m. uniform prior). Similarly, by Theorem (6),
Theorem (8) means that the average over all priors CY of P(c I d. a) equals
P(c 1 d. uniform prior). In this sense, whatever one’s learning algorithm,
one can just as readily have a prior that gives worse performance than
that associated with the uniform prior as one that gives better perfor-
mance.

To put this even more strongly, consider again the uniform-random
learning algorithm discussed at the beginning of this section. By Theo-
rems (7) and (S), for any learning algorithm, one can just as readily have
a prior for which that algorithm performs worse than the random learn-
ing algorithm-worse than random guessing-as a prior for which one‘s
algorithm performs better than the random learning algorithm.

It may be that for some particular (homogeneous) noise process, for
some training sets d and target functions 4, P(c I 4.d) is not defined.
This is the situation, for example, when there is no noise [d must lie
on 4, so for any other d and 4, P (c I 4 ? d) is meaningless]. In such
a situation, averaging over all $s with d fixed [as in Theorem (4)] is
not well-defined. Such situations can, at the expense of extra work, be
dealt with explicitly. [The result is essentially that all of the results of
this section except Theorem (4) are obtained.] Alternatively, one can
usually approximate the analysis for such noise processes arbitrarily well
by using other, infinitesimally different noise processes, processes for
which P(c I 4. d) is always defined.

4.3 Examples. Example 1: Say we have no noise in either training
set or test set generation, and the zero-one loss L(. , .). Fix two possible
(single-valued) hypotheses, hl and h2. Let learning algorithm A take in
the training set d, and guess whichever of hl and h2 agrees with d more
often (the ”majority” algorithm). Let algorithm B guess whichever of h 1

and h2 agrees less often with d (the ”antimajority” algorithm). If hl and
h2 agree equally often with d, both algorithms choose randomly between
them. Then averaged over all target functions 4, E(C I 4, m) is the same
for A and B.

As an example, take n = 5 and r := 2 (i.e., X = {0,1,2,3.4}, and Y =
(0, 1}) and a uniform sampling distribution ~ (x) . Take m’, the number of
distinct elements in the training set, to equal 4. For expository purposes,
I will explicitly show that the average over all 4 of E(C I @ m’) is the
same for A and B. [To calculate the average over all 4 of E(C I 4, m), one
sums the average of E (C 1 4. m’) P(m’ I m) over all m’.] I will take hl = the
all Is h, and k2 = the all 0s h.

1. There is one 4 that is all 0s (i.e., for which for all X values, Y = 0).

Lack of Distinctions between Learning Algorithms 1359

For that 4, algorithm A always picks hZ, and therefore E(C I 4. rn’ =
4) = 0; algorithm A performs perfectly. For algorithm B, expected
c = 1.

2. There are five 4s with one 1. For each such 4, the probability that
the training set has all four zeroes is 0.2. The value of C for such
training sets is 1 for algorithm A, 0 for B. For all other training
sets, C = 0 for algorithm A, and 1 for algorithm B. So for each of
these $s, the expected value of C is 0.2(1) + 0.8(0) = 0.2 for A, and
0.2(0) + 0.8(1) = 0.8 for B.

3. There are 10 4s with two Is. For each such 4, there is a 0.4 prob-
ability that the training set has one 1, and a 0.6 probability that it
has both 1s. (It can’t have no 1s.) If the training set has a single 1,
so does the OTS region, and C = 1 for A, 0 for B. If the training set
has two Is, then our algorithms say guess randomly, so (expected)
C = 0.5 for both algorithms. Therefore for each of these 4s, expected
C = 0.4(1) + 0.6(.5) = 0.7 for algorithm A, and 0.4(0) + 0.6(.5) = 0.3
for B. Note that here B outperforms A.

4. The case of 4s with three 1s is the same as the case of 4s with two
1s (just with ”1” replaced by ”0” throughout). Similarly, four 1s =
one, and five Is = one. So it suffices to just consider the cases
already investigated, where the number of 1s is zero, one, or two.

5. Adding them up, for algorithm A we have one 4 with (expected)
C = 0, five with C = 0.2, and 10 with C = 0.7. So averaged over all
those $s, we get [1(0) + 5(0.2) + 10(0.7)]/[1 + 5 + 101 = 0.5. This is
exactly the same expected error as algorithm B has: expected error
for B is [1(1) + 5(0.8) + 10(0.3)]/16 = 0.5. QED.

See Example 5 in paper two for a related example.
Example 2: An algorithm that uses cross-validation to choose among

a prefixed set of learning algorithms does no better on average than one
that does not, so long as the loss function is homogeneous. In addition,
cross-validation does no better than anti-cross-validation (choosing the
learning algorithm with the worst cross-validation error) on average. In
particular, the error on the validation set can be measured using a non-
homogeneous loss (e.g., quadratic loss), and this result will still hold; all
that is required is that we use a homogeneous loss to measure error on
the test set.

Alternatively, construct the following algorithm: ”If cross-validation
says one of the algorithms under consideration has particularly low error
in comparison to the other, use that algorithm. Otherwise, choose ran-
domly among the algorithms.” Averaged over all targets, this algorithm
will do exactly as well as the algorithm that always guesses randomly
among the algorithms. In this particular sense, you cannot rely on cross-
validation’s error estimate (unless you impose a prior over targets or
some such).

1360 David H. Wolpert

Note that these results don‘t directly address the issue of how accu-
rate cross-validation is as an estimator of generalization accuracy; the
object of concern here is instead the error that accompanies use of cross-
validation. For a recent discussion of the accuracy question (though in a
non-OTS context), see Plutowski et n l . (1994). For a more general discus-
sion of how error and accuracy-as-an-estimator are statistically related
(especially when that accuracy is expressed as a confidence interval), see
Wolpert (1994a). The issue of how accurate cross-validation is as an esti-
mator of generalization accuracy is also addressed in the discussion just
below Theorem (9), and in the fixed$ results in paper two.

Example 3: Assume you are a Bayesian, and calculate the Bayes-
optimal guess assuming a particular P (f) [i.e., you use the P(h Lf) that
would minimize the data-conditioned risk E (C 1 d) , i f your assumed P(f)
were the correct P (f)] . You now compare your guess to that made by
someone who uses a non-Bayesian method. Then the NFL theorems
mean (loosely speaking) that there are as many actual priors (your as-
sumed prior being fixed) in which the other person has a lower data-
conditioned risk as there are for which your risk is lower.

Example 4: Consider any of the heuristics that people have come
up with for supervised learning: avoid “over-fitting,” prefer ”simpler”
to more “complex” models, ”boost” your algorithm, ”bag” it, etc. The
NFL theorems say that all such heuristics fail as often (appropriately
weighted) as they succeed. This is true despite formal arguments some
have offered trying to prove the validity of some of these heuristics.

4.4 General Implications of the NFL Theorems. The primary impor-
tance of the NFL theorems is their implication that, for any two learning
algorithms A and B, according to any of the distributions P (c 1 d) , P(c 1 m) ,
P (c 1 f . d) , or P (c 1 f, i n) , there are just as many situations (appropriately
weighted) in which algorithm A is superior to algorithm B as vice versa.
So in particular, if we know that learning algorithm A is superior to B
averaged over some set of targets F , then the NFL theorems tell us that
B must be superior to A if one averages over all targets not in F . This is
true even if algorithm B is the algorithm of purely random guessing.

Note that much of computational learning theory, much of sampling
theory statistics (e.g., bias + variance results), etc., is based on quantities
like P(c- 1 f.tn), or on other quantities determined by P(c I f . m) (see
Wolpert 1994a). Similarly, conventional Bayesian analysis is concerned
with P (c 1 d) . All of these quantities are addressed in the NFL theorems.

As a special case of the theorems, when there are only two possible
values of L(. . .), any two algorithms are even more tightly matched in
behavior than Theorems (1) through (8) indicate. [An example of such
an L (. .) is zero-one loss, for which there are only two possible values
of L (. ‘1, regardless of r .] Let C, and C2 be the costs associated with two
learning algorithms. Now P{cI I stuff) = C,: P(cr. c2 stuff), and similarly
for P(cz I stuff). (Examples of “stuff” are {d.f}, {ni},f-averages of these,

Lack of Distinctions between Learning Algorithms 1361

etc.) If L(. . .) can take on two values, this provides us four equations (one
each for the two possible values of c1 and the two possible values of c2)
in four unknowns [P(cl , c2 I stuff) for the four possible values of c1 and
cz]. Normalization provides a fifth equation. Accordingly, if we know
both P(cl 1 stuff) and P(c2 1 stuff) for both possible values of c1 and c2, we
can solve for P(cl.c2 I stuff) (sometimes up to some overall unspecified
parameters, since our five equations are not independent). In particular,
if we know that Pc,(c I stuff) = Pc,(c I stuff), then P(cI,cz I stuff) must
be a symmetric function of c1 and c2. So for all of the "stuff"s in the
NFL theorems, when L(. . .) can take on two possible values, for any two
learning algorithms, P(c l . c2 I stuff) is a symmetric function of c1 and c2

(under the appropriate uniform average).'
All of the foregoing applies to more than just OTS error. In general

IID error can be expressed as a linear combination of OTS error plus on-
training set error, where the combination coefficients depend only on dx
and T(X E d x) . So generically, if two algorithms have the same on-training
set behavior (e.g., they reproduce d exactly), the NFL theorems apply to
their IID errors as well as their OTS set errors. (See also Appendix B.)

Notwithstanding the NFL theorems though, learning algorithms can
differ in that (I) for particular f, or particular (nonuniform) P(f), differ-
ent algorithms can have different probabilities of error (this is why some
algorithms tend to perform better than others in the real world); (2) for
some algorithms there is a distribution-conditioning quantity (e.g., an f)
for which that algorithm is optimal (i.e., for which that algorithm beats
all other algorithms), but some algorithms are not optimal for any value
of such a quantity; and more generally (3) for some pairs of algorithms
the NFL theorems may be met by having comparatively many targets in
which algorithm A is just slightly worse than algorithm B, and compara-
tively few targets in which algorithm A beats algorithm B by a lot. These
points are returned to in paper two.

4.5 Extensions for Nonuniform Averaging. The uniform sums over
f [or 4, or P (4)] in the NFL theorems are not necessary conditions for
those theorems to hold. As an example, consider the version of the
theorems for which targets are single-valued functions 4 from X to Y,
perhaps with output-space noise superimposed, and where one averages
over priors o. It turns out that we recover the NFL result for that scenario
if we average according to any distribution over the o! which is invariant
under relabeling of the 4. We do not need to average according to the
uniform distribution, and in fact can disallow all priors that are too close
to the uniform prior.

More formally, we have the following variant of Theorem (7), proven
in Appendix C:

'For more than two possible values of L (. . .), it is not clear what happens. Nor 1s j t
clear how much of this carries over to costs C' (see Section 3) rather than C.

1362 David H. Wolpert

Corollary 3. Assume OTS error, a uerticd P (d I o) , homogeneous loss L, and a
homogeneous test-set noise process. Let [I index the priors P(d), and let G (o) be
a distribution over (I . Assiirne G(ct) is itzz?ariant iinder the transformation of the
priors (i induced by relabeling the targets o. Then the aiwage according to G(tr)
o f P (c j rn. (1) equals * \ (c) / v

As a particular example of this result, define (I * to be the uniform
prior, that is the vector all of whose components are equal. Then one
G((I) that meets the assumption in Corollary (3) is the one that is constant
over o except that it excludes all vectors o lying within some L2 distance
of (I* [i.e., one C (o) that meets the assumption is the one that excludes all
priors o that are too close to being uniform]. This is because rearranging
the components of a vector does not change the distance between that
vector and (I * , so any G (o) that depends only on that distance obeys the
assumption in Corollary (3) .

Combined with Corollary (3)’ this means that G(t t) can have struc-
ture-it can have a huge amount of structure-and we still get NFL.
Alternatively, the set of allowed priors can be tiny, and restricted to priors
(I with a lot of structure (i.e., to priors lying far from the uniform prior),
and we still get NFL. Loosely speaking, there are just as many priors that
have lots of structure for which your favorite algorithm performs worse
than randomly as there are for which it performs better than randomly.

An open question is whether the condition on G (o) in Corollary (3) is
a necessary condition to have the average according to G((k) of P(c 1 m. o)
equal . l (c) / r .

Interestingly, we do not have the same kind of result when consider-
ing averages over targets f of P(c I f . m) rather than averages over o of
Pic I ~ n . 0). This is because there is no such thing as a “uniformf” that we
can restrict the average away from with the same kind of implications as
restricting an average away from a uniform prior. However, by Theorem
(2) , for any pair of algorithms, there are targets that “favor” the first of
the two algorithms, and there are targets that favor of the second. So by
choosing from both sets of targets, we can construct many distributions
r (f) that have a small support and such that the average of P (c I f . ni)
according to r(f) is the same for both algorithms. Indeed, an interesting
open question is characterizing the set of such r (f) for any particular
pair of algorithms.

4.6 On Uniform Averaging. The results of the preceding subsection
notwithstanding, it is natural to pay a lot of attention to the original
uniform average forms of the NFL theorems When considering those
forms, it should be kept in mind that the uniform averages overf [or u,
or F‘(O)] were not chosen because there is strong reason to believe that
allf are equally likely to arise in practice. Indeed, in many respects it
is absurd to ascribe such a uniformity over possible targets to the real

Lack of Distinctions between Learning Algorithms 1363

world. Rather the uniform sums were chosen because such sums are a
useful theoretical tool with which to analyze supervised learning.

For example, the implication of the NFL theorems that there is no
such thing as a general-purpose learning algorithm that works optimally
for allflP(q5) is not too surprising. However, even if one already believed
this implication, one might still have presumed that there are algorithms
that usually do well and those that usually do poorly, and that one could
perhaps choose two algorithms so that the first algorithm is usually su-
perior to the second. The NFL theorems show that this is not the case. If
all fs are weighted by their associated probability of error, then for any
two algorithms A and B there are exactly as manyfs for which algorithm
A beats algorithm B as vice versa.

Now if one changes the weighting over fs to not be according to
the algorithm’s probability of error, then this result would change, and
one would have a priori distinctions between algorithms. However, a
priori, the change in the result could just as easily favor either A or B.
Accordingly, claims that ”in the real world P(f) is not uniform, so the
NFL results do not apply to my favorite learning algorithm” are mis-
guided at best. Unless you can prove that the nonuniformity in P(f) is
well-matched to your favorite learning algorithm (rather than being “an-
timatched” to it), the fact that P(f) may be nonuniform, by itself, provides
no justification whatsoever for your use of that learning algorithm [see
the inner product formula, Theorem (l), in Wolpert 1994al.

In fact, the NFL theorems for averages over priors P (4) say (loosely
speaking) that there are exactly as many priors for which any learning
algorithm A beats any algorithm B as vice versa. So uniform distributions
over targets are not an atypical, pathological case, out at the edge of the
space. Rather they and their associated results are the average case(!).
There are just as many priors for which your favorite algorithm performs
worse than pure randomness as for which it performs better. [Recall the
discussion just below Theorem (S).]

So for the learning scenarios considered in this section (zero-one loss,
etc.) the burden is on the user of a particular learning algorithm. Unless
they can somehow show that P (4) is one of the ones for which their
algorithm does better than random, rather than one of the ones for which
it does worse, they cannot claim to have any formal justification for their
learning algorithm.

In fact if you press them, you find that in practice very often peo-
ple’s assumption do not concern P(q5) at all, but rather boil down to the
statement “okay, my algorithm corresponds to an assumption about the
prior over targets; I make that assumption.” This is unsatisfying enough
a formal justification as it stands. Unfortunately though, for many algo-
rithms, no one has even tried to write down that set of P(q5) for which
their algorithm works well. This puts the purveyors of such statements
in the awkward position of invoking an unknown assumption. (More-
over, for some algorithms one can show that there is no assumption solely

1364 David H. Wolpert

concerning targets that justifies that algorithm in all contexts. This is true
of cross-validation, for example; see paper two.)

Given this breadth of the implications of the uniform-average cases,
it is not surprising that uniform distributions have been used before to
see what one can say a priori about a particular learning scenario. For
example, the “Ugly Duckling Theorem” (Watanabe 1985) can be viewed
as (implicitly) based on a uniform distribution. Another use of a uniform
distribution, more closely related to the uniform distributions occurring
in this paper, appears in the ”problem-averaging” work of Hughes (1968).
[See Waller and Jain (1978) as well for a modern view of the work of
Hughes.] The words of Duda and Hart (1973) describing that work are
just as appropriate here: “Of course, choosing the a priori distribution is
a delicate matter. We would like to choose a distribution corresponding
to the class of problems we typically encounter, but there is no obvious
way to do that. A bold approach is merely to assume that problems are
”uniformly distributed”. Let us consider some of the implications (of
such an assumption).”

In this regard, note that you really would need a proof based com-
pletely on first principles to formally justify some particular (nonuni-
form) P(f). In particular, you cannot use your “prior knowledge” (e.g.,
that targets tend to be smooth, that Occam’s razor usually works, etc.)
to set P(f), without making additional assumptions about the applica-
bility of that ”knowledge” to future supervised learning problems. This
is because that ”prior knowledge” is ultimately an encapsulation of two
things: the data set of your experiences since birth, and the data set of
your genome‘s experiences in the several billion years it has been evolv-
ing. So if you are confronted with a situation differing at all (!) from
the previous experiences of you and/or your genome, then you are in an
OTS scenario. Therefore the NFL theorems apply, and you have no for-
mal justification for presuming that your ”prior knowledge” will apply
off-training set (i.e., in the future).

An important example of this is the fact that even if your prior knowl-
edge allowed you to generalize well in the past, this provides no assur-
ances whatsoever that you can successfully apply that knowledge to some
current inference problem. The fact that a learning algorithm has been
used many times with great success provides no formal (!) assurances
about its behavior in the future.’ After all, assuming that how well you
generalized in the past carries over to the present is formally equivalent
to (a variant of) cross-validation-in both cases, one tries to extrapolate
from generalization accuracy on input points for which we now know
what the correct answer was, to generalization behavior in general.

Finally, it is important to emphasize that results based on averag-

‘All of this is a formal statement of a rather profound (if somewhat philosophi-
cal) paradox: How is it that we perform inference so well in practice, given the NFL
theorems and the limited scope of our prior knowledge! A discussion of some “head-
to-head minimax“ ideas that touch on this paradox is presented in paper two.

Lack of Distinctions between Learning Algorithms 1365

ing uniformly over f/@/P(@) should not be viewed as normative. The
uniform averaging enables us to reach conclusions that assumptions are
needed to distinguish between algorithms, not that algorithms can be
(profitably) distinguished without any assumptions, i.e., if such an aver-
age ends up favoring algorithm A over B (as it might for a nonhomoge-
neous loss function, for example), that only means one ”should” use A
if one has reason to believe that allf are equally likely a priori.

4.7 Other Peculiar Properties Associated with OTS Error. There are
many other aspects of OTS error that, although not actually NFL theo-
rems, can nonetheless be surprising. An example is that in certain situa-
tions the expected (over training sets) OTS error grows as the size of the
training set increases, even if one uses the best possible learning algo-
rithm, the Bayes-optimal learning algorithm [i.e., the learning algorithm
which minimizes E(C I d)-see Wolpert (1994a)l. In other words, some-
times the more data you have, the less you know about the OTS behavior
of 4, on average.

In addition, the NFL theorems have strong implications for the com-
mon use of a ”test set” or ”validation set” T to compare the efficacy of
different learning algorithms. The conventional view is that the error
measured on such a set is a sample of the full generalization error. As
such, the only problem with using error on T to estimate ”full error” is
that error on T is subject to statistical fluctuations, fluctuations that are
small if T is large enough. However if we are interested in the error
for x 4 { d u T } , the NFL theorems tell us that (in the absence of prior
assumptions) error on T is meaningless, no matter how many elements
there are in T .

Moreover, as pointed out in Section (4) of the second of this pair of
papers, use of test sets cannot correspond to an assumption only about
targets [i.e., there is no P(f) that, by itself, justifies the use of test sets].
Rather use of test sets corresponds to an assumption about both targets
and the algorithms the test set is being used to choose between. Use of
test sets will give incorrect results unless one has a particular relationship
between the target and the learning algorithms being chosen between.

In all this, even the ubiquitous use of test sets is unjustified (unless
one makes assumptions). For a discussion of this point and of intuitive
arguments for why the NFL theorems hold, see Wolpert (1994a).

5 The NFL Theorems and Computational Learning Theory

This section discusses the NFL theorem’s implications for and relation-
ship with computational learning theory.

Define the empirical error
111

1366 David H. Wolpert

Sometimes the values .ir[dx(i)] in this definition are replaced by a constant;
doing so has no effect on the analysis below. As an example, for zero-one
loss and single-valued h, s is the average misclassification rate of h over
the training set. Note that the empirical error is implicitly a function of
d and h but of nothing else (T being fixed). (For deterministic learning
algorithms, this reduces to being a function only of d .) So for example
P(s I d,f) = J dhP(s I d , f , h) P (h I d) = J d h P (s 1 d,h)P(h I d) = P(s I d).

This section first analyzes distributions over C that involve the value
of s, as most of computational learning theory does. Then it analyzes
OTS behavior of “membership queries” algorithms and also of ”punting”
algorithms (those that may refuse to make a guess), algorithms that are
also analyzed in computational learning theory.

5.1 NFL Theorems Involving Empirical Error. Some of the NFL the-
orems carry over essentially unchanged if one conditions on s in the
distribution of interest. This should not be too surprising. For example,
consider the most common kind of learning algorithms, deterministic
ones that produce single-valued hs. For such learning algorithms, the
training set d determines the hypothesis h and therefore determines s. So
specifying s in addition to d in the conditioning statement of the prob-
ability distribution provides no information not already contained in d .
This simple fact establishes the NFL theorem for P(c I f , d . s) , for these
kinds of learning algorithms.

More generally, first follow along with the derivation of Lemma (l),
to get

where use was made of the identities P(yF I q , f . s) = P(yF I q-f) , and
P(q 1 d , s) = P(q 1 d) . (Both identities follow from the fact that PAIB,S.D,H[LI 1
b, s(d, h) , d , h)] = P(a 1 b, d , h) for any variables A and B.)

Continuing along with the logic that resulted in Theorem (l), we ar-
rive at the following analogue of Theorem (1) (that holds even for non-
deterministic learning algorithms, capable of guessing non-single-valued
11s):

For homogeneous loss L, the uniform average over allf of P(c I f ? d, s)
equals A (c) /Y.

Unfortunately, one cannot continue paralleling the analysis in Section
(3) past this point, to evaluate quantities like the uniform average over all
f of P(c I f , s, m). The problem is that whereas P (d I f, m) is independent
of f (x 4 d x) (for a vertical likelihood), the same need not be true of
P(d I f, s. m). Indeed, often there are fs for which P(COTS 1 f? s. in) is not
defined; for no d sampled from that f will an h be produced that has

Lack of Distinctions between Learning Algorithms 1367

error s with that d. In such scenarios the uniformf-average of P(cors I
f. s. rn) is not defined. Moreover, the set off for which P(coTs I f. s. rn)
is defined may vary with s. The repercussions of this carry through for
any attempt to create s-conditioned analogs of the NFL theorems. (A
counter-intuitive example of how the NFL theorems need not hold for
s-conditioned distributions is presented in Appendix C.)

In fact, it is hard to say anything general about P(c I f>s.rn). In
particular, it is not always the (peculiar) case that higher s results in
lower COTS iff is fixed, as in the example in Appendix C. To see this,
consider the scenario given there with a simple change in the learning
algorithm. For the new learning algorithm, if all input elements of the
training set, d x , are in some region 2, then an hypothesis h is produced
that happens to equal the target f, whereas for any other dxs, there are
errors both on and off dx. So if s = 0, we know that COTS = 0. But if s > 0,
we know that COTS > 0; raising s from 0 has raised expected COTS.

Now consider P(c I s , d) for uniform P(f), where it is implicitly as-
sumed that for at least one k for which P (h I d) # 0, the empirical error is
s, so P (s . d) # 0. For this quantity we do have an NFL result that holds
for any learning algorithm (see Appendix C):

Theorem 9. For kornugeneous L, OTS error, a vertical likel~koud, and uniform
P(f), Pjc I s. d) = A(c)/r.

The immediate corollary is that for homogeneous L, OTS error, a vertical
likelihood, and uniform P(f), P(c I s.rn) = A(c)/r, independent of the
learning algorithm.

It is interesting to note that a uniform P(f) can give NFL for P(c I s. rn)
even though a uniform average over f of P(c I f. s. m) does not. This
illustrates that one should exercise care in equating the basis of NFL for
f-conditioned distributions [Theorem (2)] with having a uniform prior.

An immediate question is how Theorem (9) can hold despite the ex-
ample above where as s shrinks E(CoTs I f. s, rn) grows, for any target f.
The answer is that P(c I s. rn) = dfP(c I f. s. rn) P(f I s, m). Even if for
any fixed target f the quantity P(c 1 f. s. rn) gets biased toward lower cost
c as the empirical error s is raised, this does not mean that the integral
exhibits the same behavior.

As an aside, it should be noted that the only property of s needed
by Theorem (9) or its corollary is that P(s 1 d,f) = P (s I d). In addition
to holding for the random variable S, this property will hold for any
random variable u that is a function only of d for the algorithms under
consideration. So in particular, we can consider using cross-validation
to choose among a set of one or more deterministic algorithms. Define
(T as the cross-validation errors of the algorithms involved. Since for a
fixed set of deterministic algorithms (T is a function solely of d, we see
that for a uniform P(f), (T is statistically independent from C; there is no
information contained in the set of cross-validation errors that has bear-
ing on generalization error. In this sense, unless one makes an explicit

1368 David H. Wolpert

assumption for P(f), cross-validation error has no use as an estimate of
generalization error.

5.2 Compatibility with Vapnik-Chervonenkis Results. The fact that
P(c I s. m) = . 2 (c) / r (under the appropriate conditions) means that P(c I
s .m) = P(c 1 m) under those conditions [see Corollary (l)]. This implies
that Pis 1 c. m) is independent of cost c. So C~~~ and empirical error S
are statistically independent, for uniform P(f), homogeneous L, and a
vertical likelihood. Indeed, in Appendix B in Wolpert (1992) there is an
analysis of the case where we have a uniform sampling distribution T (.) ,

zero-one loss, binary Y, and i i /m - x (so Cy)Ts - CitD; see Appendix I3
of this paper). It is there proven that E(C;,, 1 s. ni) = 1/2, independent of

In accord with this, one expects that C&Ts and S are independent
for uniform P (f) . On the other hand, Vapnik-Chervonenkis (uniform
convergence) theory tells us that P(c;,, ~ s I m) is biased toward small
values of cilD - s for low-VC dimension generalizers, and large m. This is
true for any prior P(f), and therefore in particular for a uniform prior. It
is also true even when i7 > nz, so that CkITS and Ci,D closely approximate
each other.

It should be emphasized that there is no contradiction between these
VC results and the NFL theorems. Independence of s and c& does not
imply that s and c;,Ts can differ significantly. For example, both the VC
results and the NFL theorems would hold if for manyf P(c;,.,, 1 f . m) and
P (s 1 f . m) were independent but were both tightly clumped around the
same value, i.

Now let us say we have an instance of such a "clumping" phe-
nomenon, but do not know < (< being determined by (the unknown)
f, among other things). We might be tempted to take the observed value
of s as an indicator of the likely value of <. In turn, we might wish to
view this likely value of < as an indicator of the likely value of c&. In
this way, having observed a particular value of s, we could infer some-
thing about c;,Ts (e.g., that it is unlikely to differ from that observed value
of 5). However Theorem (9) says that this reasoning is illegal [at least
for uniform P(f)]. Statistical independence is statistical independence;
knowing the value of s tells you nothing whatsoever about the value of
c& (see Wolpert 1994a for further discussion of how independence of s
and c ;) ~ ~ is compatible with the VC theorems).

Intuitively, many of the computational learning theory results relating
empirical error s and generalization error c:,, are driven by the fact that s
is formed by sampling cilD (see Wolpert 1994a). However, for OTS c' the
empirical error s cannot be viewed as a sample of c'. Rather s and c& are
on an equal footing. Indeed, for single-valued targets and hypotheses,
and no noise, s and cbTS are both simply the value c;lo has when restricted
to a particular region in X. (The region is i lx for s, X - i f x for cbTS.) In
this sense, there is symmetry between s and c:>Ts (symmetry absent for s

s.

Lack of Distinctions between Learning Algorithms 1369

and chD). Given this, it should not be surprising that for uniform P(f),
the value of s tells us nothing about the value of cbTs and vice versa.

5.3 Implications for Vapnik-Chervonenkis Results. The s-independ-
ence of the results presented above has strong implications for the uni-
form convergence formalism for investigating supervised learning (Vap-
nik 1982; Vapnik and Bottou 1993; Anthony and Biggs 1992; Natarajan
1991; Wolpert 1994a). Consider zero-one loss, where the empirical er-
ror s is very low and the training set size m is very large. Assume that
our learning algorithm has a very low VC dimension. Since s is low
and m large, we might hope that that low VC dimension confers some
assurance that our generalization error will be low, independent of as-
sumptions concerning the target. (This is one common way people try
to interpret the VC theorems.)

However according to the results presented above, low s, large m,
and low VC dimension, by themselves, provide no such assurances con-
cerning OTS error (unless one can somehow a priori rule out a uniform
P(f)-not to mention rule out any other prior having even more dire
implications for generalization performance). This is emphasized by the
example given above where a tight confidence interval on the probability
of cbTS differing from s arises solely from P(cbTS I m) and P(s I m) being
peaked about the same value; s and cbTS are statistically independent,
so knowing s tells you nothing concerning cbTS. Indeed, presuming cbTs
is small due only to the fact that s, m, and the learning algorithm’s VC
dimension are small can have disastrous real-world consequences (see
the example concerning “We-Learn-It Inc.” in Wolpert 1994a).

Of course, there are many other conditioning events one could con-
sider besides the ones considered in this paper. And, in particular,
there are many such events that involve empirical errors. For exam-
ple, one might investigate the behavior of the uniformf-average of P(c I
sA. s B , m,f), where SA and S B are the empirical errors for the two algo-
rithms A and B considered in Example (1) in Section (3).

It may well be that for some of these alternative conditioning events
involving empirical errors, one can find a priori distinctions between
learning algorithms, dependences on s values, or the like. Although such
results would certainly be interesting, one should be careful not to ascribe
too much practical significance to them. In the real world, it is almost
always the case that we know d and h in full, not simply functions of
them like the empirical error. In such a scenario, it is hard to see why one
would be concerned with a distribution of the form P[c 1 function(d), h],
as opposed to distributions of the form P(c I d) [or perhaps P(c 1 d ,h) ,
or thef-average of P(c 1 d,f), or some such]. So since the NFL theorems
say there is no a priori distinction between algorithms as far as P(c I d) is
concerned, it is hard to see why one should choose between algorithms
based on distributions of the form P[c Ifunction(d), h], if one does indeed
know d in full.

1370 David H. Wolpert

5.4 Implications of the NFL Theorems for Active Learning Algo-
rithms. Active learning (aka ”query-based learning,” or ”membership
queries”) is where the learner decides what the points dx will be. Usually
this is done dynamically; as one gets more and more training examples,
one uses those examples to determine the ”optimal” next choices of d x (i) .

As far as the EBF is concerned, the only difference between active
learning and traditional supervised learning is in the likelihood. Rather
than IID likelihoods like that in equation (3.1), in active learning each
successivedx(i) isafunctionofthe (i-1) pairs { d x (j = l.i-l).dy(j = 1. i -
I)}, with the precise functional dependence determined by the precise
active learning algorithm being used.

So long as it is true that P[dY(,nr) 1 d x (n r) . f] is independent of f [x #
i f x (n ~)] , active learning has a vertical likelihood (see Appendix C). So all of
the negative implications of the NFL theorems apply just as well to active
learning as IID likelihood learning, and in particular apply to the kinds
of active learning discussed in the computational learning community.

5.5 Implications of the NFL Theorems for “Punting” Learning Algo-
rithms. Some have advocated using algorithms that have an extra option
besides making a guess. This option is to “punt,” i t . , refuse to make a
guess. As an example, an algorithm might choose to punt because it
has low confidence in its guess (say for VC theory reasons). It might
appear that, properly constructed, such algorithms could avoid making
bad guesses. If this were the case, it would be an assumption-free way
of ensuring that iLhetl onegiiesses, the guesses are good. (One would have
traded in the ability to always make a guess to ensure that the guesses
one does make are good ones.) In particular, some have advocated using
algorithms that add elements to d adaptively until (and if) they can make
what they consider to be a safe guess.

However the simple fact that a particular punting algorithm has a
small probability of making a poor guess, by itself, is no reason to use
that algorithm. After all, the completely useless algorithm that always
punts has zero probability of making a poor guess. Rather what is of
interest is how well the algorithm performs when it does guess, and/or
how accurate its punt-signal warning is as an indicator that to make a
guess would result in large error. To analyze this, I will slightly modify
the definition of punting algorithms so that they always guess, but also
always output a punt / no punt signal (and perhaps ask for more training
set elements), based deterministically only on the d at hand. The issue
a t hand then is how the punt / no punt signal is statistically correlated
with C.

Examine any training set ii for which some particular algorithm out-
puts a no punt signal. By the NFL theorems, for such a d, for uniform
P (. f) , a vertical P (d 1 f), and a homogeneous OTS error, P (c 1 cl) is the
same as that of a random generalizer, i.e., under those conditions, P (c I
if. no punt) = . \(c)/r. As a direct corollary, P (c 1 ur. no punt) = . l (c) / r . It

Lack of Distinctions between Learning Algorithms 1371

follows that P(c 1 no punt) = A (c) / r (assuming the no punt signal arises
while OTS error is still meaningful, so m’ < n).

Using the same kind of reasoning though, we also get P(c I punt) =
A(c)/r, etc. So there is no statistical correlation between the value of the
punt signal and OTS error. Unless we assume a nonuniform P(f), even
if our algorithm “grows” d until there is a no punt signal, the value of
the punt / no punt signal tells us nothing about C. Similar conclusions
follow from comparing a punting algorithm to its ”scrambled” version,
as in the analysis of nonhomogeneous error (see paper two).

In addition, let A and B be two punting algorithms that are identical
in when they decide to output a punt signal, but B guesses randomly
for all test inputs q 6 d x . Then for the usual reasons, As distribution
over OTS error is, on average, the same as that of B, i.e., no better than
random. This is true even if we condition on having a no punt signal.

One nice characteristic of some punting algorithms-the characteristic
exploited by those who advocate such algorithms-is that there can be
some prior-free assurances associated with them. As an example, for all
targets f , the probability of such an algorithm guessing and making an
error in doing so is very small [see classes (1) and (2) below]: Vf, for
sufficiently large m and nonnegligible E, P(COTS > &.no punt I f . m) is
tiny.

However P(COTS > E , no punt I f. m) in fact equals 0 for the always-
punt algorithm. So one might want to also consider other distributions
like P(COTS > E 1 no punt.f. m) or P(COTS < 1 - &.no punt 1 f. m) to get
a more definitive assessment of the algorithm’s utility. Unfortunately
though, both of these distributions are highly f-dependent. (This illus-
trates that thef-independent aspects of the punting algorithm mentioned
in the previous paragraph do not give a full picture of the algorithm’s
utility.)

In addition, other f-independent results hardly inspire confidence in
the idea of making a guess only when there is a no punt signal. As
an illustration, restrict things so that both hypotheses k and targets are
single-valued (and therefore targets are written as functions &), and there
is no noise. Y is binary, and we have zero-one loss. Let the learning
algorithm always guess the all 0s function, k*. The punt signal is given
if d y contains at least one non-zero value. Then for the likelihood of
(3.1), uniform ~(x), and n >> m, we have the following result, proven in
Appendix E:

Theorem 10. Fur the k’ learning algurithm,fur all targets d, such that Q(x) = 0
fur mure than rn distinct x, E(COT~ I 4\ punt, m) 5 E (C ~ T ~ I 4. nu punt, m).

For n >> m, essentially all & meet the requirement given in Theorem
(10); for such n and m, we do better to follow the algorithm’s guessing
advice when we are told not to than we are told the guessing is good!

In many respects, the proper way to analyze punting algorithms is
given by decision theory. First, assign a cost to punting. (Formally, this

1372 David H. Wolpert

just amounts to modifying the form of P (c I f . 11. d) for the case where h
and d lead to a punt signal.) This cost should not be less than the minimal
no-punting cost, or the optimal algorithm is to never guess. Similarly, it
should not be more than the maximal no-punting cost, or the optimal al-
gorithm never punts. Given such a punting cost, the analysis of a particu-
lar punting algorithm consists of finding those P(f) such that E (C ~ T ~ I in)
is "good" (however defined). In lieu of such an analysis, one can find
those P(f) such that E(CoTs I no punt. m) < E (C ~ T ~ I punt. m) (e.g., one
can analyze whether priors that are uniform in some sphere centered
on h' and zero outside of it result in this inequality). Such analyses-
apparently never carried out by proponents of punting algorithms-are
beyond the scope of this paper however. (In addition, they vary from
punting algorithm to punting algorithm.)

5.6 Intuitive Arguments Concerning the NFL Theorems and Punt-
ing Algorithms. Consider again the algorithm addressed in Theorem
(10). For this algorithm, there are two separate kinds of 4:

1. 0, such that the algorithm will almost always punt for a d of suffi-

2. 4 such that the algorithm has tiny expected error when it chooses

(Targets 4 with almost no xs such that $(x) = 1 are in the second class,
and other targets are in the first class.)

It might seem that this breakdown justifies use of the algorithm. After
all, for large enough m', if the target is such that there is a nonnegligible
probability that the algorithm does not punt, it is not in class 1, so if it
does not punt error will be tiny. Thus it would seem that whatever the
target (or prior over targets), if the algorithm has not punted, we can be
confident in its guess. [Similar arguments can be made when the two
classes distinguish sets of P(@)s rather than 4s.I

However, if we restate this, the claim is that E(C 1 no punt. m) is tiny
for sufficiently large in, for any prior over targets P ($) . (Note that for
n >> rn and non-pathological T (.) , m' is unlikely to be much less than
m.) This would imply, in particular, that it is tiny for uniform P(q5).
However from the preceding subsection we know that this is not true.
So we appear to have a paradox.

To resolve this paradox, consider using our algorithm and observing
the no punt signal. Now restate (1) and (2) carefully: In general, either

1. The target is such that for sufficiently large nz' the algorithm will al-
most always punt, but wheiz it does not punt, it usually makes sigizifcaizf
errors, or

2. The target is such that the algorithm has tiny expected error when
it chooses not to punt.

cient size sampled from 4, or

not to punt.

Lack of Distinctions between Learning Algorithms 1373

Now there are many more 4s in class 1 than in class 2. So even though
the probability of our no-punt signal is small for each of the 4s in class
1 individually, when you multiply by the number of such 4, you see
that the probability of being in class 1, given that you have a no-punt
signal, is not worse than the probability of being in class 2, given the
same signal. In this sense, the signal gains you nothing in determining
in which class you are in, and therefore in determining likely error.3

So at a minimum, one must assume that P (4) is not uniform to have
justification for believing the punt/no punt signal. Now one could argue
that a uniform P (4) is highly unlikely when there is a no-punt signal, i.e.,
P[no punt I N = uniform P(4). m] is very small, and that this allows one
to dismiss this value of a if we see a no punt signal. Formally though, (1

is a hyperparameter, and should be marginalized out: it is axiomatically
true that P (4) = J d o P (4 I o)P(a) and is fixed beforehand, independent
of the data. So the presence/absence of a punt signal cannot be used to
"infer" something about P(d), formally speaking [see the discussions of
hierarchical Bayesian analysis and empirical Bayes in Berger (1985) and
Bernard0 and Smith (1994)l. More generally, the NFL theorems allow us
to "jump a level," so that classes 1 and 2 refer to as rather than 4s. And
at this new level, we again run into the fact that there are many more
elements in class 1 than in class 2.

To take another perspective, although the likelihood P(no punt I class.
rn) strongly favors class 2, the posterior need not. Lack of appreciation for
this distinction is an example of how computational learning theory relies
almost exclusively on likelihood-driven calculations, ignoring posterior
calculations.

It may be useful to directly contrast the intuition behind the class
1-2 reasoning and that behind the NFL theorems: The class 1-2 logic
says that given a 4 with a nonnegligible percentages of Is, it's hugely
unlikely to get all 0s in a large random data set. Hence, so this intuitive
reasoning goes, if you get all Os, you can conclude that 4 does not have
a nonnegligible percentages of Is, and therefore you are safe in guessing
0s outside the training set. The contrasting intuition: say you are given
some particular training set, say of the first K points in X, together with
associated Y values. Say the Y values happen to be all 0s. Obviously,
without some assumption concerning the coupling of 4s behavior over
the first K points in X with its behavior outside of those points, 4 could
have any conceivable behavior outside of those points. So the fact that
it is all 0s has no significance, and cannot help you in guessing.

"11 that is being argued in this discussion of classes (1) and (2) is that the absence
of a punt signal does not provide a reason to believe error is good. This argument does
not directly address whether the presence of a punt signal gives you reason to believe
you are in class (l), and therefore is correlated with bad error. The explanation of why
there is no such correlation is more subtle than simply counting the number of 4s in
each class. It involves the fact that there are actually a continuum of dasses, and that
for fixed 4, raising s (so as to get a punt signal) lowers OTS (!) error.

1371 David H. Wolpert

It should be emphasized that none of the reasoning of this subsection
directly addresses the issue of whether the punting algorithm has good
”head-to-head minimax” OTS behavior in some sense (see paper two).
That is an issue that has yet to be thoroughly investigated. In addition,
recall that no claims are being made in this paper about what is (not)
reasonable in practice; punting algorithms might very well work well in
the real world. Rather the issue is what can be formally established about
how w7elI they work in the real world without making any assumptions
concerning targets.

5.7 Differences between the NFL Theorems and Computational
Learning Theory. Despite the foregoing, there are some similarities be-
t\veen the NFL theorems and computational learning theory. In particu-
lar, \\Then all targets are allowed-as in the NFL theorems-PAC bounds
on the error associated with 5 = 0 are extremely poor (Blumer t’t nl.
1987, 1989; Dietterich 1990; Wolpert 1994a). However there are impor-
tant differences between the NFL theorems and this weak-PAC-bounds
phenomenon.

1. For the most part, PAC is designed to give positive results. In
particular, this is the case with the PAC bounds mentioned above.
(More formally, the bounds in question give an upper bound on
the probability that error exceeds some value, not a lower bound.)
However lack of a positive result is not the same as a negative
result, and the NFL theorems are full-blown negative results.

2. PAC (and indeed all of computational learning theory) has noth-
ing to say about these data (it,., Bayesian) scenarios. They only
concern data-averaged quantities. PAC also is primarily concerned
with polynomial versus exponential convergence issues, i.e., asymp-
totics of various sorts. The NFL theorems hold even if one does not
go to the limit, and hold even for these data scenarios. [See also
Wolpert (1994a) for a discussion of how PAC’s being exclusively
concerned with convergence issues renders its real-world meaning-
fulness debatable, at best.]

3. The PAC bounds in question can be viewed as saying there is no
universally good learning algorithm. They say nothing about the
possibility of whether some algorithm 1 may be better than some
other algorithm 2 in most scenarios. As a particular example, noth-
ing in the PAC literature suggests that there are as many (appropri-
ately weighted) fs for which a boosted learning algorithm (Drucker
Et 01. 1993; Shapire 1990) performs worse than its unboosted version
as there are for which the reverse is true.

4. The PAC bounds in question do not emphasize the importance of a
vertical likelihood, they do not emphasize the importance of homo-
geneous noise when the target is a single-valued function; they do

Lack of Distinctions between Learning Algorithms 1375

not emphasize the importance of whether the loss function is ho-
mogeneous; they do not invoke "scrambling" (see paper two) for
nonhomogeneous loss functions (indeed, they rarely consider such
loss functions); they do not concern averaging over pairs of ks (in
the sense of Section (4) of paper two), etc. In all this, they are too
general. Note that this overgenerality extends beyond the obvious
problem that they are "(sampling) distribution free." Rather they
are too general in that they are independent of many of the features
of a supervised learning problem that are crucially important.

5. Computational learning theory does not address OTS error. Es-
pecially when m is not infinitesimal in comparison to n and/or
~ (x) is highly nonuniform, computational learning theory results
are changed significantly if one uses OTS error (see Wolpert 1994a).
And even for infinitesimal m and fairly uniform ~ (x) , many distri-
butions behave very differently for OTS rather than IID error (see
Section 5.2).

Appendix A. Detailed Exposition of the EBF

This Appendix discusses the EBF in some detail. Since it is the goal of
this paper to present as broadly applicable results as possible, care is
taken in this Appendix to discuss how a number of different learning
scenarios can be cast in terms of the EBF.

Notation

0 In general, unless indicated otherwise, random variables are written
using upper case letters. A particular instantiation value of such a
random variable is indicated using the corresponding lower case
letter. Note though that some quantities (e.g., parameters like the
size of the spaces) are neither random variables nor instantiations
of random variables, so their written case carries no significance.

0 When clarity is needed, the argument of a P (.) will not be used to
indicate what the distribution is; rather a subscript will denote the
distribution. For example, PF(~) means the prior over the random
variable F (targets), evaluated at the value h (a particular hypoth-
esis). This is common statistics notation. (Note that with condi-
tioning bars, this notation leads to expressions like "PAls(c 1 d),"
meaning the probability of random variable A conditioned on vari-
able B, evaluated at values c and d, respectively.)

0 Also in accord with common statistics notation, "E(A 1 b)" will be
used to mean the expectation value of A given B = b, i.e., to mean
J' d a a P (a 1 b) . (Sums replace integrals if appropriate.) This means
in particular that anything not specified is averaged over. So for
example, E(A I b) = ,[dc da a P(a I b. c) P(c I b) = J dc E (a I b. c) P (c 1

1376 Da\rid H. Wolpert

b) . When it is obvious that their value is assumed fixed and what
it is fixed to, sometimes I will not specify variables in conditioning
arguments.

0 I will use 11 and i' to indicate the (countable though perhaps infinite)
number of elements in the set X (the input space) and the set Y (the
output space), respectively. (X and Y are the only case in this paper
where capital letters do not indicate random variables.) Such cases
of countable X and Y are the simplest to present, and always obtain
in the real world where data are measured with finite precision
instruments and are manipulated on finite size digital computers.

A generic X value is indicated by x, and a generic Y value by y.
Sometimes I will implicitly take Y and/or X to be sets of real numbers,
sometimes finely spaced. (This is the case when talking about the "ex-
pected value" of a Y-valued random variable, for example. j

The Primary Random Variables

0 In this paper, the "true" or "target" relationship between (test set)
inputs and (test set) outputs is taken to be an X-conditioned dis-
tribution over Y [i.e., intuitively speaking, a P(y 1 x)]. In other
words, where S, is defined as the r-dimensional unit simplex, the
"target distribution" is a random \miable mapping X + S,. Since
X and Y are simply sets and not themselves random variables, this
is formalized as follows:

Let F be a random variable taking values in the ri-fold Cartesian prod-
uct space of simplices s,. Letf be a particular instantiation of that vari-
able, i.e., an element in the n-fold Cartesian product space of simplices
S,. Then f can be viewed as a Euclidean vector, with indices given by
a value s E X and y E Y. Accordingly, we can indicate a component
o f f by writing f(x.y). So for all .Y, y, fix.!/) 2 0, and for any fixed x,
X , , f (s y) = 1.

This defines the random variable F. The formal sense in which this P
can be viewed as an "X-conditioned distribution over Y" arises in how it
is statistically related to certain other random variables (specified below)
taking values in X and in Y.

0 In a similar fashion, the generalizer's hypothesis is an "X-conditioned
distribution over Y," i.e., the hypothesis random variable H takes
\ d u e s in the ir-fold Cartesian product space of simplices S, and
components of any instantiation h of H can be indicated by h(x.!y).

0 If for all s, i i (s . y) is a Kronecker delta function (over y), h is called
"single-valued," and similarly for f. In such a case, the distribution
in question reduces to a single-valued function from X to Y .

0 The value d of the training set random variable is an ordered set of
u i input-output pairs, or "examples." Those pairs are indicated by

Lack of Distinctions between Learning Algorithms 1377

dx(i) , dy(i){i = 1 . . . m}. The set of all input values in d is dx and
similarly for d y . m' is the number of distinct values in d x .

0 The cost C is a real-valued random variable.
0 The primary random variables are such target distributions F , such

hypothesis distributions H, training sets D, and real-world "cost"
or "error" values C measuring how well one's learning algorithm
performs. They are "coupled" to supervised learning by imposing
certain conditions on the relationship between them, conditions that
are discussed next.

The Relationship between C, F, and H , Mediated by Q, YE, and Yff.
It will be useful to relate C to F and H using three other random variables.
"Testing" (involved in determining the value of C) is done at the X value
given by the X-valued random variable Q. Y values associated with the
hypothesis and Q are given by the Y-valued random variable YH (with
instantiations yH), and Y values associated with the target and Q are
given by the Y-valued random variable YF (with instantiations yF).

All of this is formalized as follows.

0 The F random variable parameterizes the Q-conditioned distribu-
tion over YF : P(YF 1 f . q) = f (4 . y ~) . In other words, f determines
how test set elements YF are generated for a test set point q. So
YF and Q are the random variables whose relationship to F allows
F to be intuitively viewed as an "X-conditioned distribution over
Y"-see above.

0 The variable YH meets similar requirements: P(YH 1 k. 9) = h(q. yH),

and this relationship between YH, Q, and H is what allows one to
view H as intuitively equivalent to an "X-conditioned distribution
over Y."

0 For the purposes of this paper, the random variable cost C is de-
fined by C = L(YH. YF), where L(. . .) is called a "loss function." As
examples, zero-one loss has L(a , b) = 1 - h(a. b), where h(a. b) is the
Kronecker delta function, and quadratic loss has L(u> b) = (a - b)2.
(Zero-one loss is assumed in almost all of computational learning
theory.)

It is important to note though that in general C need not cor-
respond to such a loss function. For example, "logarithmic scor-
ing" has c = - C,f(q> y) In[k(q. y)], and does not correspond to any
L(YF,YH).

0 For many Ls the sum over y F of b[c. L(yH. yF)] is some function
h (c) , independent of YH. I will call such Ls "homogeneous." In-
tuitively, such Ls have no a priori preference for one Y value over
another. As examples, the zero-one loss is homogeneous. So is the
squared difference between YF and yli if they are viewed as angles,
L(YF. YH) = [(YF - Y H J mod TI'.

1378 David H. Wolpert

Note that one can talk of an L’s being homogeneous for certain values
of c. For example, the quadratic loss is not homogeneous over all c, but it
is for i = 0. The results presented in this paper that rely on homogeneity
of L usually hold for a particular c so long as L is homogeneous for that
c, even if L is not homogeneous for all c.

The Relationship between F , D and Q

Note thatf is a distribution governing test set data (it governs the
outputs associated with q) , and in general it need not be the same
as the distribution governing training set data. Unless explicitly
stated otherwise though, I will assume that both training sets and
test sets are generated viaf.

Often when training and testing sets are generated by the same
P(y 1 x), the training set is formed by iterating the following “inde-
pendent identically distributed” (IID) procedure: Choose X values
according to a ”sampling distribution” a(x), and then sample f at
those points to get associated Y values.“ More formally, this very
common scheme is equivalent to the following ”likelihood,” pre-
sented previously as equation 3.1:

Pid I f) = P(dY / f . d x) P (d x I f)
= P(dy I f . I f x j Pi&) (by assumption)

= IT{ i ; [dx(i) I f [i l x (i) . &(i) j}
11.

r = l

There is no a priori reason for P (d 1 f) to have this form, however.
For example, in “active learning” or “query-based“ learning, successive
LTalues (as i increases) of d x (i) are determined by the preceding values of
& (i) and dy(i) . As another example, typically P (d I f) will not obey equa-
tion (3.1) if testing and training are not governed by the same P(y 1 x).
(Recall that f governs the generation of test sets.) To see this, let t be the
random variable P(!y 1 x) governing the generation of training sets. Then
P (d I f) = ,I’ dfP(tf 1 t) P (t I fi. Even if P (d I t) = n : ’ ~ , { ~ i [d , (i)] f [d x (i) . d , (i)] } ,
unless P (f I f j is a delta function about t = f , P (d I f) need have the form
specified in equation 3.1.

I will say that P (d 1 f) is ”vertical” if it is independent of the values
of f(s @ d x) . Any likelihood of the form given in equation (3.1) is
vertical, by inspection. In addition, as discussed in Section 5, active

‘In general, ti itself could be a random variable that can be estimated from the data,
that is perhaps coupled to other random variables (e.g., f), etc. However here I make
thc usual assumption in the neural net and computational learning literature that 71 is
fixed. This is technically known as a “filter likelihood,” and has powerful implications
(we Wolpert 1994b).

Lack of Distinctions between Learning Algorithms 1379

learning usually has a vertical likelihood. However, some scenarios
in which t #f do not have vertical likelihood^.^

0 In the case of ”IID error” (the conventional error measure),
P(q I d) = ~ (q) . In the case of OTS error, P(q I d) = [S(9 $! d x) n (q)] /
[&6(q $! d x) ~ (q)] , where b(z) = 1 if z is true, 0 otherwise. Strictly
speaking, OTS error is not defined when m‘ = n.

Where appropriate, subscripts OTS or IID on c will indicate
which kind of P(q I d) is being used.

Function + Noise Targets
0 In this paper I will consider in some detail those cases where we

only allow thosef that can be viewed as some single-valued func-
tion 4 taking X to Y with a fixed noise process in Y superimposed.6
To do this, I will (perhaps only implicitly) fix a noise function N
that is a probability distribution over Y, conditioned on X x Y; N
is a probability distribution over yF, conditioned on the values of q
and $(q) . [Note that there are rn such functions I j (.) .]

Given N(.), each 4 specifies a unique f$, via P(yf I f4. q) = f4(9. y ~) =

N[YF I q .d (q)] = P(YF I q3 4). Accordingly, all the usual rules concerning f
apply as well to 4. [For example, P(h 1 d > 4) = P(h 1 d).] When I wish to
make clear what 4 setsf, I will writef4, as above; 4 simply serves as an
index onf . [In general, depending on N(.), it might be that more than
one (h labels the samef, but this will not be important for the current
analysis.] So when I say something like ”vertical P(d I 4)’’ it is implicitly
understood that I mean vertical P (d 1 f4).

0 When I say that I am ”only allowing” these kinds off, I will mean
that whenever ’If” is written, it is assumed to be related to a 0
in this manner-all other f implicitly have an infinitesimal prior
probability.

0 Note that the N(.) introduced here is the noise process operating in
the generation of the test set, and need not be the same as the noise

5As an example, assume that f is some single-valued function from X to Y, 9, so
that P(YF I f@. q j = 6 [y ~ . 4(4)] . However, assume that d is created by corrupting Q with
both noise in X and noise in Y. This can be viewed as a “function + noise” scenario
where the noise present in generating the training set is absent in testing. (This case is
discussed in some detail below.)

As an example of such a scenario, viewing any particular pair of X and Y val-
ues from the training set as random variables Xi and Yt, one might have Yt =
Cx, y(Xts X’) 4(X’) + E, where X’ is a dummy X variable, y(.. . j is a convolutional pro-
cess giving noise in X, and E is a noise process in Y. (Strictly speaking, this particular
kind of Y-noise requires that r = x, as otherwise Ex, y(x.x’jd(x‘j + E might not lie in
Y.)

For this scenario, t ff. In addition, P(d I f) does not have the form given in equation
3.1. In particular, due to the convolution term, P(d I f) will depend on the values of
f = 4 for x @ d x ; the likelihood for this scenario is not vertical.

6Noise in X of the form mentioned in footnote 5 will not be considered in this paper.
The extension to analyze such noise processes is fairly straightforward however.

1380 David H. Wolpert

process in the generation of the training set. As an example, it is
common in the neural net literature to generate the training set by
adding noise to a single-valued function from X to Y, o(.), but to
measure error by how well the resulting h matches that underlying
o(.), not by how well YH values sampled from h match Yr values
formed by adding noise to o (') . In the o-N terminology, this would
mean that although P(rf I f) may be formed by corrupting some
function o(.) with noise (in either X and/or Y), P(yF 1 f. 9). which
is used to measure test set error, is determined by a noise-free N(.),

0 Of special importance will be those noise-processes for which for
each q, the uniform o-average of P(y/- 1 q. o) is independent of y, .
(Note this does not exclude q-dependent noise processes). I will call
such a (test-set) noise process "homogeneous." Intuitively, such
noise processes have no a priori preference for one Y value over
another. As examples, the noise-free testing mentioned just above
is homogeneous, as is a noise process that when it takes in a value
of 0(9) , produces the same value with probability z and all other
Lralues with (identical) probabilities (1 - z)/(r - 1).

NIyr 1 q . oiq)] = q y , . oiq)].

Coupling All This to Supervised Learning

0 Any (!) learning algorithm (or "generalizer") is simply a distribu-
tion P (h 1 d) . It is "deterministic" i f the same d always gives the
same lz [i.e., if for fixed rl, P(lr 1 11) is a delta function about one
particular 111.

0 There are many equalities that are assumed in supervised learn-
ing, but that do not merit explicit delineation. For example, it is
implicitly assumed that P(It 1 q. i l) = P (/ I 1 d) , and therefore that

0 One assumption that does merit explicit delineation is that P (h 1
f . d) = P(It 1 d) (i.e., the learning algorithm only sees d in making
its guess, not f) . This means that P(I1.f I i f) = P (h 1 d) P(f 1 d) , and
therefore P (- f) 1 t . d) = P(f I d) .

As an example of the importance of this assumption, note that it
implies that P(yr 1 y,!. d . q) = Ply/ j [I . q) .

Pi[! d . h) = P i q 1 d \ .

Proof. ExpandP(yF y f i . ~ l . q) = 1 tfff(q.y/)P(f i Lf .171 1' [f h h (q . y , ~) . P (h 1
f .d.q). Since P (h j f.d.q) = Pill I il), this integral is proportional to

I Lfff(q.yF) P(f 1 d . q) , where the proportionality constant depends on d ,
ylf , and q. However .I i!ff(q.yi)P(f 1 d . q i = P(y/ 1 d . q) . Due to nor-
malization, this means that the proportionality constant equals 1, and we
have established the proposition. QED.

Our assumption does not imply that Piyi j yH. d 1 -- P(y/ I d) , however.
Intuitively, for a fixed learning algorithm, knov:ii.g !it, a n d L / tells you

Lack of Distinctions between Learning Algorithms 1381

something about q, and therefore (in conjunction with knowledge of d)
something about YF, that d alone does not.

0 The ”posterior” is the Bayesian inverse of the likelihood, P(f 1 d).
The phrase “the prior” usually refers to P(f).
Some schemes can be cast into this framework in more than one
way. As an example, consider softmax (Bridle 1989), where each
output neuron indicates a different possible event, and the real val-
ues the neurons take in response to an input are interpreted as
input-conditioned probabilities of the associated events. For this
scheme one could either (1) take Y to be the set of “possible events,”
so that the k produced by the algorithm is not single-valued, or
(2) take Y to be (the computer’s discretization of) the real-valued
vectors that the set of output neurons can take on, in which case k
is single-valued, and Y itself is interpreted as a space of probability
distributions. Ultimately, which interpretation one adopts is deter-
mined by the relationship between C and H. (Such relationships
are discussed below.)

“Generalization Error“

0 Note that E(C 1 f . k . d) = CY,,.YFqE(C 1 f . k . d . ~ ~ . y ~ . q) P (y ~ . y r . q 1
f. k . d) . Due to our definition of C, the first term in the sum equals
L (y ~ . p) . The second term equals P(YH I k . q . f . d . y r) P (y f I 4.f.d.
k) P(q 1 d. f k) . This in turn equals k (q . y ~) f (q . YF) P(q 1 f . h. d). In
addition, P(q If. k . d) = P(9 I d) always in this paper. Therefore
E(C I f . k - d) = cy,, yF,y L(YH3 YF) k (9 > Y H) f (9 . YF) P (9 I d) .

In much of supervised learning, an expression like that on the right-
hand side of this equation is called the ”generalization error.” In other
words, instead of the error C used here, in much of supervised learning
one uses an alternative error C’, defined by C(f. k . d) E E(C I f . k . d) , i.e.,
P(c’ 1 f . k . d) = h[c’.E(C 1 f . k . d)] .

Note that in general, the set of allowed values of C is not the same
as the set of allowed values of C’. In addition, distributions over C
do not set those over C’. For example, knowing P(c I d) need not
give P(c’ 1 d) or vice versa.7 However many branches of supervised

71f there are only two possible L(. , .) values (for example), P(c‘ I d) does give P(c 1 d).
This is because P(c’ 1 d) gives E(C’ I d) = E(C 1 d) (see below in Appendix A), and since
there are two possible costs, E(C 1 d) gives P(c I d). It is for more than two possible cost
values that the distributions P(c’ 1 d) and D(c 1 d) do not determine one another. In fact,
even if there are only two possible values of L (. . .), so that P(c’ I d) sets P(c I d), it does
not follow that P(c 1 d) sets P(c’ 1 d) . As an example, consider this case where IZ = m’+2,
and we have zero-one loss. Assume that given some d, P(f I d) and P(h 1 d) are such that
either h agrees exactly withf for OTS q or the two never agree, with equal probability.
This means that for zero-one OTS error, P(c 1 d) = S(c,O)/2 + O(c. 1)/2. However we
would get the same distribution if all four possible agreement relationships between
h andf for the off-training set q were possible, with equal probabilities. And in that

1382 David H. Wolpert

learning theory (e.g., much of computational learning theory) are
concerned with quantities of the form ”P(error > E 1 . . .).’’8 For
such quantities, whether one takes ”error” to mean C or (as is con-
ventional) C’ may change the results, and in general one cannot
directly deduce the result for C from that for C’ (or vice versa).

Where appropriate, subscripts OTS or IID on c’ will indicate
which kind of P(q I d) is being used.

0 Fortunately, most of the results derived in this paper apply equally
well to both probabilities of C and probabilities of C’. For reasons
of space though, I will work out the results explicitly only for C.
However, note that we can immediately equate expectations of C
that are not conditioned on q, YH, or y~ with the same expectations
of C’. For example,

E (C I d) = 1 d h d f E (C I f . h . d) P (f . h I d)

= 1 dhdfC’(f.h.d)P(f,h 1 d)

= 1 dhdfE(C’ l f . h . d) P (f . h I d) = E(C’ I d)

So when cast in terms of expectation values, any (appropriately
conditioned) results automatically apply to C’ as well as C.

Miscellaneous

0 For most purposes, it is implicitly assumed that no probabilities
equal zero exactly (although some probabilities might be infinites-
imal). That way we have never have to worry about dividing by
probabilities, and in particular never have to worry about whether
conditional probabilities are well-defined. So as an example, phrases
like ”noise-free” are taken to mean infinitesimal noise rather than
exactly zero noise. Similarly, where needed, integrals over f are
implicitly restricted away from fs having one or more components
equal to zero.

0 It is important to note that in general, for nonpathological 7 r (.) ,

in the limit where FZ >> r, distributions over cIlD are identical to
distributions over c&. In this sense theorems concerning OTS error
immediately carry over to IID error. This is proven formally in
Appendix B.

second case, we would have the possibility of C’ values that are impossible in the first
case (e.g., c = 1/2). QED.

“In general, whether ”error” means C or C’, this quantity is of interest only if the
number of values error can have is large. So for example, it is of interest for C’ if r is
large and we have quadratic loss.

Lack of Distinctions between Learning Algorithms 1383

Appendix B. Proof That Distributions Over Cf,, Equal Those Over CbTS
Whenever n >> Y, for Nonpathological a(-)

To prove the assertion, with slight abuse of terminology write Cf,, =

CbTS~(X - dx) + Cks.ir(dx), where ”TS” means error on the training set,
defined in the obvious way, and T (A) = C,,,a(x) (see Wolpert et al.
1995). Then for any set of one or more random variables Z taking value
z , we have

Now again abuse terminology slightly and write

where the statistical dependencies of CbTS and Cks are made explicit by
writing them as functions. Plugging in we get

Define E F maxdx r(dx), so mindx T(X - d x) = 1 - E . Now whenever
n >> m, so long as there are no sharp peaks in T(.) , E + 0. However,
because a delta function is not a continuous function, taking the limit as
E -+ 0 of our expression for P(cf,, I z) is not immediately equivalent to
setting the a(X - d x) and . ir(dx) inside the delta function to 1 and to 0,
respectively. We can circumvent this difficulty rather easily though. To
do that, first define

1384 David H. Wolpert

Then write

x P(d,f, h 1 z)

for some f i where I f i / 5 6.
Now for nonpathological z , P(c;,, I z) is a continuous function of c;,,

as n and/or T (.) are varied. (Recall, in particular, that in this paper, no
event has exactly zero probability; see Appendix A.) So for such a Z, for
E sufficiently small, h + 0 and therefore f i --t 0, and we can approximate

But this just equals Pc;,T512(c~lD 1 z). So for n >> rn and nonpathological z
and T (.) , the distribution over c;DD is the same as that over cLTs. QED.

Appendix C. Miscellaneous Proofs -

For clarity of the exposition, several of the more straightforward proofs
in the paper are collected in this appendix.

Proof of Lemma 1. Write P(c I f . d) = C, P(c 1 !/H. yr. q.f. d) P (~ H I
. . y p . q . f . d) P (y p , q I f . d) . Rewriting the summand, we get P(c I f.d) =
~ ~ / , i . y l .q b[c. L (! / H . Y F)] p(! /H 1 !/F*f. 4. d) p(yF. 4 1 f - d) .

NOW P(YH I ! / ~ . f % q . d) = , I dhP(yH 1 y ~ . h . f . q . d) P (h I ~ p . f . 9 . d) =
,I' d h P (y j , I h . q . d) P (h I q . d) [see point (11) in the EBF section]. This
just equals P(YH I 4 . d) . [However it is not true in general that P(yf, I
! l F . d) = P(yH I d) (see Wolpert d al. 1995).] Plugging in gives the result.
QED.

Proof of the Claim Concerning the "Random Learning Algorithm,"
Made Just Below Lemma (1). By Lemma 1, P(c I f . d) = &,I,,Cr ,4 h[c. L(yl,.
! / r)] P(!/JI I 9. d) P(YF I 4.f) P (q I d) . However, for OTS error q @ d x , and
therefore for the random learning algorithm, for all q and d in our sum,
P(yH I 4.11) = l / u , independent of YH (recall that there are Y elements
in Y). If we have a symmetric homogeneous loss function, this means
that we can replace & / F j h[c. L(yH. yr)] P(yH I q. d) with A(c)/v. Since this
is independent of d andf , P (c I d) = A(c)/r for all training sets d , as
claimed. QED.

Proof of the "Implication of Lemma (l)," Made Just Below Lemma
(1). Uniformly average the expression for P(c I f. d) in Lemma (1) over all
targetsf. The only placef occurs in the sum in Lemma (1) is in the third
term, P (~ F I 9.1). Therefore our average replaces that third term with
some function func(yF. 4) . By symmetry though, the uniform f-average
of that third term in the sum must be the same for all test set inputs

Lack of Distinctions between Learning Algorithms 1385

q and outputs yF. Accordingly func(yF.q) is some constant. Now the
sum over YF of this constant must equal 1 [to evaluate that sum of the
f-average of P(yF 1 q . f) , interchange the sum over YF with the average
overf]. Therefore our constant must equal l / v . The implication claimed
is now immediate. QED.

Proof of Theorem (2). We can replace the sum over all q that gives
P(c I f . d) [Lemma (1)l with a sum over those q lying outside of dx .
Accordingly, for such a P(q 1 d) , P(c 1 f . d) is independent of the values
of f (x E d x) . (For clarity, the second argument off is being temporarily
suppressed.)

Noting that P(d I f) is vertical, next average both sides of our equation
for P(c 1 f . m) uniformly over all f and pull the f-average inside the sum
over d. Since P(c 1 f. d) and P(d 1 f) depend on separate parts off [namely
f (x $ d x) andf(x E d x) , respectively], we can break the average over f
into two successive averages, one operating on each part off, and thereby
get

But since P(c I f . d) is independent of the values of f (x E d x) , uniformly
averaging it over allf(x $ dx) is equivalent to uniformly averaging it over
all f . By Theorem (l), such an average is independent of d. Therefore we
can pull that average out of the sum over d, and get Theorem (2) . QED.

Proof of Theorem (3). Write P (c I d) for a uniform P (f) x J’ d f P (c 1
d , f) P(d If), where the proportionality constant depends on d . Break up
the integral overf into an integral overf(x1 E d x) and one overf(x @ d x) ,
exactly as in the proof of Theorem (2) . Absorb .r d f (x E d x) P(d 1 f) into
the overall (d-dependent) proportionality constant. By normalization, the
resultant value of our constant must be the reciprocal of df(x @ d x) l .
QED.

Proof of Theorem (7). J d a P (c 1 nz.0) = J dct[&,,P($ 1 m,ck)P(c 1
rn. 0.4)], where the integral is restricted to the r”-dimensional simplex.
This can be rewritten as J’ d ~ [& , 06 P(c I q5. rn. o.)], since we assume that
the probability of d, has nothing to do with the number of elements in
d. Similarly, once 4 is fixed, the probability that C = c does not de-
pend on (Y, so our average equals J’ da[& a d P(c 1 @ m)] . Write this as
&, P(c I 4> m) [[da n4]. By symmetry, the term inside the square brackets
is independent of 4. Therefore the average over all P (4) of P(c 1 rn) is
proportional to & P(c I 4. m). Using Theorem (5) and normalization, this
establishes Theorem (7). QED.

Proof of Corollary (3). Follow along with the proof of Theorem (7).
Instead of J’ dtr 08, we have J da G(tr)ab. (For present purposes, the
delta and Heaviside functions that force (L to stay on the unit simplex

1386 David H. Wolpert

arc implicit.) By assumption, G(tr) is unchanged under the bijection of
replacing all vectors o, with new vectors identical to the old, except that
the components for i = o and i = o' are interchanged. This is true for all
C'I and tl. Accordingly, our integral is independent of o, which suffices
to prove the result. QED.

Proof of Theorem (9). To evaluate P (c I s . d) for uniform P(f), write
it as ,I d f P (c 1 s.Li.f)P(f 1 d . s) . Next write P(f 1 d . s) = P (s I f .d)P(f 1
d) / P (s I d) . Note though that P (s I f . d) = P (s 1 dj (see beginning of Section
S), and recall that we are implicitly assuming that P (s 1 d) # 0). So we
get P (c 1 s . d) = 1 d f P (c 1 s . d . f) P (d 1 f), up to an overall d-dependent
proportionality constant. Now proceed as in the proof of Theorem (2) by
breaking the integral into two integrals, one overf(x E dx), and one over
f i x 4 d x) . The result is P (c j s.d,! = .\(c)/r, up to an overall d-dependent
proportionality constant. By normalization, that constant must equal 1.
This establishes Theorem (9). QED.

Example of Non-NFL Behavior of s-Conditioned Distributions. Let
P (h 1 d) = $ (h . / i -) for some Ii', let ~ (s) be uniform, use zero-one loss,
assume a noise-free IlD likelihood, and take ni = 1. Then we can write

.sj (i i - 1). [Note that Ci,D is independent of d, and that for zero-one loss
17 x C;,[](f. / I %) is the number of disagreements between h* andf over all
of X.] No matter what f is, this grows as s shrinks. Since CoTs can have
only two values, this means that as s grows, P(COTS 1 f. s. 111 = 1) gets
biased toward the lower of the two possible values of COTS. So we do not
have NFL behavior for the uniform average over f of P (c 1 f . s. m)-that
average depends on the empirical error s.

E(C<>TS 1 s.f.m = 1) = E(C<JTs 1 s.f.??i = 1.h = / I *) = [n C { ~ D (f . h *) -

Proof That Active Learning Has a Vertical Likelihood. Let dk re-
fer to the first k input-output pairs in the training set d, and d(i) to
the ith such pair. Then Pid,,, 1 f) = P [d (m i I f .d, , ,-~] P(d,,, - 1 I f) =
P i d ~ (n 1) I d ~ (m) . f . d , , , - ~] P[dxjni) 1 f . i f , , , - ~] P (d , , , - ~ I f). By hypothesis, in
active learning P[dX(m) 1 f.d,,,-,] = P[dx(in) I c f , , , - l j . So long as it is also
true that Pjdy(771) 1 dx(tn).f. dl,l-lj = P [d y (t n) 1 dX(m).f] is independent of
f [x # dxini)], by induction we have a vertical likelihood.

Appendix D. Proof of Theorem (8) -

The task before us is to calculate the average over all (t of P (c 1 d. 0) . To
that end, write the average as (proportional to) I dtr[C,P(d 1 d . c ~) P (c I
o. d. (I I!, where as usual the integral is restricted to the r"-dimensional
simplex. Rewrite this integral as f dn[C,P(o J c i)P(c 1 (2 . d . o) P (d J d.(i)/
Pid 1 (t I] = dr\[C,, n.,P(c 1 o. d) P (d I 0)]/[1,~ rr,fP(d I o')] , where d is a

Lack of Distinctions between Learning Algorithms 1387

dummy 4 value. Rewrite this in turn as

As in the proof of Theorem (2), break up $ into two components, 41
and 42, where $1 fixes the values of Q; over the X values lying inside d x ,
and $2 fixes it over the values outside of dx. We must find how the terms
in our sum depend on $1 and 4 2 .

First, write P(c I 4 . d) = C h P (h I d) P (c 1 h ,4 .d) . By definition, for
OTS error P(c 1 h ,$,d) is independent of 41. This allows us to write
P(c I 4 , d) = P(c I 4 2 . 4 .

Next, since we are restricting attention to vertical likelihoods, P(d 1 d)
depends only on $l. So we can write the term in the curly brackets

obvious notation. Since we are assuming that for no $ does P(d I 4)
equal zero exactly, the denominator sum is always nonzero.

Now change variables in the integral over a by rearranging the 42
indices of a. In other words, d1 and 4 2 are a pair of discrete-valued
vectors, and N is a real-valued vector indexed by a value for Q;1 and one
for qb2; transform (Y so that its dependence on 4 2 is rearranged in some
arbitrary-though invertible-fashion. Performing this transformation is
equivalent to mapping the space of all $2 vectors into itself in a one-to-one
manner. The Jacobian of this transformation is 1, and the transformation
does not change the functional form of the constraint forcing N to lie on a
simplex (i.e., C9,42,, ag,b2,, = 1 and for all 4142~, abld2,, 2 0, where double-
prime indicates the new 4 2 indices). So expressed in this new coordinate
system, the integral is J dn{a~,,s2,/ Em; a,;P(d I &)}, where 4; is a new
index corresponding to the old index 4 2 . Since this integral must have
the same value as our original integral, and since 4; is arbitrary, we see
that that integral is independent of 42, and therefore can only depend on
the values of d and $l.

as s d n [a ~ , ~ * / C " I " ; a s ~ ~ ~ P P (d I 411 = s d + d C $ ayP(d I 4)l with

This means that we can rewrite our sum over all #I as

c P(C I $ 2 , d)P(d I 41) func1{41, 4
I"I&

for some function "funcl(-)." In other words, the a-average of P(c 1
d , a) is proportional to P(c I $2, d) , where the proportionality constant
depends on d. Since P(c 1 4, d) = P(c I 42.d) (see above), our sum is
proportional to &,m2P(c I 4,d) = &,P(c 1 4 . d) . By Theorem (4), this
sum equals A(c)/r.

So the uniform a-average of P(c I d, a) = funcZ(d) A(c)/r for some
function "func2(.)." Since C, P(c I d , CY) = 1, the sum over C values of the
uniform n-average of P(c 1 d, a) must be independent of d (it must equal
1). Therefore funcZ(d) is independent of d . Since we know that h (c) / r is
properly normalized over c, we see that funcn(d) in fact equals 1. QED.

1388 David H. Wolpert

Appendix E. Proof of Theorem (10) -

First use the fact that given q, d x determines whether there is a punt
signal, to write

€[CoTs I 4. (no) punt. ml = E(COTS I d. 4)
‘1,

x P [d x I (no) punt. o. 1111 (E.1)

Next, without loss of generality, let the xs for which o(x) = 0 be
1.. . . . k , so that p(x) = 1 for x = k + l ~ n. Then P(dx I no punt. 0. in) = 0
unless all the d x (i) 5 k . Since T (X) is uniform, and d is ordered and
perhaps has repeats, the value of P(dx I no punt. 41. r n) when all the d x (i) 5
k is k-“’. Similarly, P (d x I punt.@.m) = 0 unless at least one of the
d x (i) > k , and when it is nonzero it equals some constant set by k and nz.

It’s also true that €(CoTs 1 Q. d x) is not drastically different if one con-
siders d x s with a different m’. Accordingly, our summand does not vary
drastically between dxs of one m‘ and dxs of another. Since 11 >> 772 and
~ (s) is uniform though, almost all of the terms in the sum have rn’ = 1 1 1 .

Pulling this all together, we see that to an arbitrarily good approximation
(for large enough i i relative to m), we can take m’ = m. So E.l becomes

E[CUTS I (/A (no) punt. m] = E(COTS 1 4. d ~)
dX

x P[dx I (no) punt. m. m’ = m] (E.2)

Now consider conditioning on ”no punt,” in which case all the d x (i) 5
k. For such a situation, for m’ = 1 1 1 , €(COTS I &.&) = (i f - k) / (n - rn).
In contrast, consider having a punt signal, in which case at least one
d x (i) > k. NOW E(&s 1 & d x) 5 (1 1 - k - l) / (r ? - WI) < (n - k) / (n - V I) .

Combining this with E.2, we get E (C ~ T ~ I ~5.punt.m) < €(COTS I
Q. no punt. m) . QED.

Acknowledgments

I would like to thank Cullen Schaffer, Wray Buntine, Manny Knill, Tal
Grossman, Bob Holte, Tom Dietterich, Karl Pfleger, Mark Plutowski, Bill
Macready, Bruce Mills, David Stork, and Jeff Jackson for interesting dis-
cussions. This work was supported in part by the Santa Fe Institute and
by TXN Inc.

References

Anthony M., and Biggs N. 1992. Computational Lcnrniizg Theory. Cambridge
University Press, Cambridge.

Lack of Distinctions between Learning Algorithms 1389

Berger, J. 1985. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag,

Berger, J., and Jeffreys, W. 1992. Ockham’s razor and Bayesian analysis. A m .

Bernardo, J. Smith, A. 1994. Bayesian Theory. John Wiley, New York.
Blumer, A,, et al. 1987. Occam’s razor. l i form. Process. Lett. 24, 377-380.
Blumer, A,, et al. 1989. Learnability and Vapnik-Chervonenkis dimension. J.

Bridle, J. 1989. Probabilistic interpretation of feedforward classification net-
work outputs, with relationships to statistical pattern recognition. In Npzm-
Computing: Algorithms, Architectures, and Applications, F. Fougelman-Soulie
and J. Herault eds., Springer-Verlag, Berlin.

Berlin.

Sci. 80, 64-72.

A C M 36, 929-965.

Dietterich, T. 1990. Machine learning. Annu . Rev. Comput. Sci. 4, 255-306.
Drucker, H. et al. 1993. Improving performance in neural networks using a

boosting algorithm. In Neiiral Information Processing Systems 5, S . Hanson et
al. eds. Morgan Kaufmann, San Mateo, CA.

Duda, R., and Hart, P. 1973. Pattern Classification and Scene Analysis. John Wiley,
New York.

Hughes, G. 1968. On the mean accuracy of statistical pattern recognizers. I E E E
Transac. Inform. Theory IT-14, 55-63.

Kearns, M. J. 1992. Towards efficient agnostic learning. In Proceedings of the 5th
Annual Workshop on Computational Learning Theory, ACM Press, New York.

Mitchell, T. 1982. Generalization as search. Art$ Intell. 18, 203-226.
Mitchell T., and Blum, A. 1994. Course Notes for Machine Learning, CMU.
Murphy, P., and Pazzani, M. 1994. Exploring the decision forest: An empirical

investigation of Occam’s razor in decision tree induction. 1. Artif. lritell. Xes.

Natarajan, B. 1991. Machine Learning: A Theoretical Approach. Morgan Kaufmann,
San Mateo, CA.

Perrone, M. 1993. Improving regression estimation: Averaging methods for
variance reduction with extensions to general convex measure optimization.
Ph.D. thesis, Brown Univ., Physics Dept.

Plutowski, M. 1994. Cross-validation estimates integrated mean squared er-
ror. In Advances in Neiiral lnforrnation Processing Systems 6 , Cowan et al. eds.
Morgan Kaufmann, San Mateo, CA.

1, 257-275.

Schaffer, C. 1993. Overfitting avoidance as bias. Machine Learn. 10, 153-178.
Schaffer, C. 1994. A conservation law for generalization performance. In Ma-

chine Learning: Proceedings of the Eleventh International Conference, Cohen and
Hirsh, eds. Morgan Kaufmann, San Mateo, CA.

Schapire, R. 1990. The strength of weak learnability. Machine Learn. 5, 197-227.
Vapnik, V. 1982. Estimation of Dependences Based on Empirical Data. Springer-

Vapnik, V, and Bottou, L. 1993. Local algorithms for pattern recognition and

Waller, W., and Jain, A. 1978. On the monotonicity of the performance of

Verlag, Berlin.

dependencies estimation. Neiiral Comp. 5, 893-909.

Bayesian classifiers. I E E E Transact. Inform. Theory IT-24, 392-394.

1390 David H. Wolpert

Watanabe, S. 1985. Pattern Recognition: Human and Medinnical. John Wiley, New

Weiss, S. M., and Kulikowski, C. A. 1991. Coniyuter Systciris that Learn. Morgan

Wolpert, D. 1992. On the connection between in-sample testing and generaliza-

Wolpert, D. 1993. On O z y f i t t i q AzJoidnnce ns Bins. Tech. Rep. SFI TR 93-03-016.
Wolpert, D. 1994a. The relationship between PAC, the Statistical Physics frame-

work, the Bayesian framework, and the VC framework. In The M n t h m n t i c s
of Geriernlizntion, D. Wolpert ed., Addison-Wesley, Reading, MA.

Wolpert, D. 1994b. Filter likelihoods and exhaustive learning. In Coniyiitntionnl
Learning Theor!/ and Natiirnl Lenrning Systenis: Voliime 11, S. Hanson et al. eds.
MIT Press, Cambridge, MA.

Wolpert, D. 1995. On the Bayesian ”Occam factors” argument for Occam’s razor.
In Cotnputational Learning Theory and Nntirral Lenrniiig Slystems: Voliime 111, T.
Petsche et al. eds. MIT Press, Cambridge, MA.

Wolpert, D., and Macready, W. 1995. No Free Liincli T/ieoretiis for Search. Tech.
Rep. SFI TR 95-02-010. Submitted.

Wolpert, M., Grossman, T., and Knill, E. 1995. Off-training-set error for the
Gibbs and the Bayes optimal generalizers. Submitted.

York.

Kaufmann, San Mateo, CA.

tion error. Coniplex S!yst. 6, 47-94.

~~

Received August 18, 1995, accepted February 14, 1996

This article has been cited by:

1. Chrysovalantis Gaganis, Fotios Pasiouras, Michael Doumpos, Constantin
Zopounidis. 2010. Modelling banking sector stability with multicriteria approaches.
Optimization Letters 4:4, 543-558. [CrossRef]

2. Robert L. Goldstone, David Landy. 2010. Domain-Creating Constraints. Cognitive
Science 34:7, 1357-1377. [CrossRef]

3. A. V. Kelarev, J. L. Yearwood, P. Watters, X. Wu, J. H. Abawajy, L. Pan. 2010.
Internet security applications of the Munn rings. Semigroup Forum 81:1, 162-171.
[CrossRef]

4. A. V. KELAREV, P. WATTERS, J. L. YEARWOOD. 2009. REES MATRIX
CONSTRUCTIONS FOR CLUSTERING OF DATA. Journal of the Australian
Mathematical Society 87:03, 377. [CrossRef]

5. Edwin Lughofer, James E. Smith, Muhammad Atif Tahir, Praminda Caleb-Solly,
Christian Eitzinger, Davy Sannen, Marnix Nuttin. 2009. Human–Machine
Interaction Issues in Quality Control Based on Online Image Classification. IEEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 39:5,
960-971. [CrossRef]

6. Albert Orriols-Puig, Ester Bernadó-Mansilla. 2009. Evolutionary rule-based
systems for imbalanced data sets. Soft Computing 13:3, 213-225. [CrossRef]

7. D. M. Rocke, T. Ideker, O. Troyanskaya, J. Quackenbush, J. Dopazo. 2009. Papers
on normalization, variable selection, classification or clustering of microarray data.
Bioinformatics 25:6, 701-702. [CrossRef]

8. Joanna J. Bryson. 2008. Embodiment versus memetics. Mind & Society 7:1, 77-94.
[CrossRef]

9. Michael Doumpos, Constantin Zopounidis. 2007. Model combination for credit
risk assessment: A stacked generalization approach. Annals of Operations Research
151:1, 289-306. [CrossRef]

10. Ralph van Dinther, Roy D. Patterson. 2006. Perception of acoustic scale and size
in musical instrument sounds. The Journal of the Acoustical Society of America 120:4,
2158. [CrossRef]

11. D.H. Wolpert, W.G. Macready. 2005. Coevolutionary Free Lunches. IEEE
Transactions on Evolutionary Computation 9:6, 721-735. [CrossRef]

12. David R. R. Smith, Roy D. Patterson, Richard Turner, Hideki Kawahara, Toshio
Irino. 2005. The processing and perception of size information in speech sounds.
The Journal of the Acoustical Society of America 117:1, 305. [CrossRef]

13. Zhe Chen , Simon Haykin . 2002. On Different Facets of Regularization TheoryOn
Different Facets of Regularization Theory. Neural Computation 14:12, 2791-2846.
[Abstract] [PDF] [PDF Plus]

14. Aki Vehtari , Jouko Lampinen . 2002. Bayesian Model Assessment and Comparison
Using Cross-Validation Predictive DensitiesBayesian Model Assessment and

http://dx.doi.org/10.1007/s11590-010-0182-1
http://dx.doi.org/10.1111/j.1551-6709.2010.01131.x
http://dx.doi.org/10.1007/s00233-010-9242-1
http://dx.doi.org/10.1017/S1446788709000299
http://dx.doi.org/10.1109/TSMCA.2009.2025025
http://dx.doi.org/10.1007/s00500-008-0319-7
http://dx.doi.org/10.1093/bioinformatics/btp038
http://dx.doi.org/10.1007/s11299-007-0044-4
http://dx.doi.org/10.1007/s10479-006-0120-x
http://dx.doi.org/10.1121/1.2338295
http://dx.doi.org/10.1109/TEVC.2005.856205
http://dx.doi.org/10.1121/1.1828637
http://dx.doi.org/10.1162/089976602760805296
http://www.mitpressjournals.org/doi/pdf/10.1162/089976602760805296
http://www.mitpressjournals.org/doi/pdfplus/10.1162/089976602760805296

Comparison Using Cross-Validation Predictive Densities. Neural Computation
14:10, 2439-2468. [Abstract] [PDF] [PDF Plus]

15. Randall C. O'Reilly . 2001. Generalization in Interactive Networks: The Benefits
of Inhibitory Competition and Hebbian LearningGeneralization in Interactive
Networks: The Benefits of Inhibitory Competition and Hebbian Learning. Neural
Computation 13:6, 1199-1241. [Abstract] [PDF] [PDF Plus]

16. M. Koppen, D.H. Wolpert, W.G. Macready. 2001. Remarks on a recent paper on
the "no free lunch" theorems. IEEE Transactions on Evolutionary Computation 5:3,
295-296. [CrossRef]

17. N.S.V. Rao. 2001. On fusers that perform better than best sensor. IEEE
Transactions on Pattern Analysis and Machine Intelligence 23:8, 904-909. [CrossRef]

18. Malik Magdon-Ismail . 2000. No Free Lunch for Noise PredictionNo Free Lunch
for Noise Prediction. Neural Computation 12:3, 547-564. [Abstract] [PDF] [PDF
Plus]

19. David Greenhalgh, Stephen Marshall. 2000. Convergence Criteria for Genetic
Algorithms. SIAM Journal on Computing 30:1, 269. [CrossRef]

20. Zehra Cataltepe , Yaser S. Abu-Mostafa , Malik Magdon-Ismail . 1999. No Free
Lunch for Early StoppingNo Free Lunch for Early Stopping. Neural Computation
11:4, 995-1009. [Abstract] [PDF] [PDF Plus]

21. Huaiyu Zhu , Wolfgang Kinzel . 1998. Antipredictable Sequences: Harder to
Predict Than Random SequencesAntipredictable Sequences: Harder to Predict
Than Random Sequences. Neural Computation 10:8, 2219-2230. [Abstract] [PDF]
[PDF Plus]

22. David H. Wolpert. 1997. On Bias Plus VarianceOn Bias Plus Variance. Neural
Computation 9:6, 1211-1243. [Abstract] [PDF] [PDF Plus]

23. D.H. Wolpert, W.G. Macready. 1997. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation 1:1, 67-82. [CrossRef]

24. David H WolpertBayesian and Computational Learning Theory . [CrossRef]

http://dx.doi.org/10.1162/08997660260293292
http://www.mitpressjournals.org/doi/pdf/10.1162/08997660260293292
http://www.mitpressjournals.org/doi/pdfplus/10.1162/08997660260293292
http://dx.doi.org/10.1162/08997660152002834
http://www.mitpressjournals.org/doi/pdf/10.1162/08997660152002834
http://www.mitpressjournals.org/doi/pdfplus/10.1162/08997660152002834
http://dx.doi.org/10.1109/4235.930318
http://dx.doi.org/10.1109/34.946993
http://dx.doi.org/10.1162/089976600300015709
http://www.mitpressjournals.org/doi/pdf/10.1162/089976600300015709
http://www.mitpressjournals.org/doi/pdfplus/10.1162/089976600300015709
http://www.mitpressjournals.org/doi/pdfplus/10.1162/089976600300015709
http://dx.doi.org/10.1137/S009753979732565X
http://dx.doi.org/10.1162/089976699300016557
http://www.mitpressjournals.org/doi/pdf/10.1162/089976699300016557
http://www.mitpressjournals.org/doi/pdfplus/10.1162/089976699300016557
http://dx.doi.org/10.1162/089976698300017043
http://www.mitpressjournals.org/doi/pdf/10.1162/089976698300017043
http://www.mitpressjournals.org/doi/pdfplus/10.1162/089976698300017043
http://dx.doi.org/10.1162/neco.1997.9.6.1211
http://www.mitpressjournals.org/doi/pdf/10.1162/neco.1997.9.6.1211
http://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1997.9.6.1211
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1002/0470018860.s00009

